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ABSTRACT

The rheological properties of a number of liquids
composed of model molecules have been characterized in detail
using the technique of Molecular Dynamics (MD). The models
consisted of molecules composed of 2, 3 and 6 interaction
centres including, in the latter case, internal degrees of
freedom. It has been shown that of the available methods of
determinining the viscosity by MD, (the Green-Kubo formula,
perturbation experiment and homogeneous shear non-equilibrium
molecular dynamics (HSNEMD)), HSNEMD is the most accurate and

efficient.

HSNEMD calculations on fluids composed of diatomic
molecules have been performed at various densities and for
different molecular anisotropies. For these models a simple
correlation has been established between the pressure
coefficient of the viscosity and the compressibility.
Comparisons of diatomic and triatomic models representing
ethane and propane under the same conditions of temperature
and pressure show that the difference in rheological behaviour
has its origins primarily in the different effective
temperatures of the two liquids. Similar experiments
performed on a model n-hexane fluid with and without barriers
to internal rotation have shown that the degree of flexibility

of a molecule has a strong influence on its temperature
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coefficient of viscosity. For the first time the ability of
shear flow to extend molecules has been demonstrated

convincingly.

XY



ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor,
Julian Clarke, for his continued support and encouragement and
also to Martin Whittle both of whom I have enjoyed working
with and with whom X have had many thought provoking and
stimulating discussions. For their help with various
technical aspects of the work T would like to thank Bill
Smith, David Heyes, David Fincham and Jean-Paul Ryckaert and

also many other members of CCP5 too numerous to mention.

I would like to express my gratitude to Shell for their
financial assistance throughout this work and to Mr.J.F.Hutton
of Shell's Thornton Research Centre for his support for and

continued interest in the project.

The UMRCC and the SERC are thanked for the provision of
generous allocations of computer time and Y would also like to
thank the staff of the Control Systems Centre at UMIST for

their friendly assistance in using the PRIME computer.

Finally, I would like to express my gratitude to my
brother, Alan, for providing a certain amount of the
inspiration to undertake research and for his help in

obtaining this opportunity.



LIST OF CONTENTS

DECLARATION

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

Chapter 1

INTRODUCTION

1.1 The Aims of this Work

1.2 Experimental Studies

1.3 Simulation Studies

1.4 Results from and Conclusions of Simulation Studies.
Chapter 2

METHODS

2.1 Molecular Dynamics

2.2 MD for Atomic Systems with Continuous Potentials
2.3 Evaluation of Equilibrium Properties

2.4 Evaluation of Dynamical Properties

2.5 MD for Polyatomic Systems

2.6 Diatomic Molecules

2.7 Rigid Molecules

2.8 Algorithm for Rotational Motion using Quaternions
2.9 The Method of Constraints

2.16 The Constraints Algorithm

2.11 Polyatomics : General Considerations

2.12 Homogeneous Shear NEMD

2.13 Lees-Edwards Boundary Conditions

ii
iv

ix

12

24

38
490
47
53
56
60
66
71
74
76
80
84

85



2.14 Shear Algorithm for the Perturbation Method 87
2.15 Shear Algorithm for the Direct Method 88
Chapter 3

DIATOMIC RESULTS

3.1 Introduction 93
3.2 Chlorine Model and Computational Details 95
3.3 Chlorine Results at T~260K, P~@, ¥_5.608 ana *=1.0 96

3.4 Chlorine results at T~260K, P~1GPa,

1*-0.608 and 1¥-1.9 110
3.5 Tie Shear Rate Dependence of the Viscosity 119
3.6 The Pressure/Density Dependence of the Viscosity 124
3.7 Shear Induced Alignment 128
3.8 Non-equilibrium thermodynamics 134
3.9 Shear Induced Structural Changes 139
3.19 Conclusions 141
Chapter 4

ETHANE AND PROPANE RESULTS
4.1 Introduction 145

4.2 Ethane and Propane Models and Computational Details 146

4.3 Results at T~200K, P~0 148
4.4 The Shear Rate Dependence of the Viscosity 159
4.5 Shear Induced Alignment 162
4.6 Non-equilibrium thermodynamics 165
4.7 Shear Induced Structural Changes 169
4.8 Conclusions 171

Wi



Chapter 5

HEXANE AND FLEXANE : EQUILIBRIUM RESULTS AT 200K

5.1 Introduction

5.2 Details of the Models

5.3 Details of the Simulations

5.4 Results at 200K

5.5 Radial Distribution Functions

5.6 Orientational Cross Correlation Function

5.7 Intramolecular Structure

5.8 Intramolecular Dynamics

5.9 Self Diffusion

5.16 Correlation Functions for Force, Torque,
Reorientation and Stress

5.11 Conclusions

Chapter 6

1]

HEXANE AND FLEXANE : NON-EQUILIBRIUM RESULTS AT 200K
6.1 Introduction

6.2 Results at 200K

6.3 The Shear Rate Dependence of the Viscosity

6.4 Shear Induced Alignment

6.5 Non-equilibrium thermodynamics

6.6 Shear Induced Intermolecular Structural Changes
6.7 Shear Induced Intramolecular Structural Changes
6.8 Self Diffusion

6.9 Conclusions

172

173

174

177

181

182

183

189

195

201

205

206

207

213

216

219

225

228

234

239



Chapter 7

HEXANE AND FLEXANE RESULTS AT 300K

7.1 Introduction

7.2 Details of the Simulations

7.3 Results at 300K

7.4 The Shear Rate Dependence of the Viscosity

7.5 Shear Induced Alignment

7.6 Non-equilibrium thermodynamics

7.7 Shear Induced Intermolecular Structural Changes
7.8 Shear Induced Intramolecular Structural Changes
7.9 Conclusions

7.19 Static Properties : 200K vs. 300K

7.11 Dynamical Properties : 200K vs. 300K

7.12 Conclusions

Chapter 8

GENERAL CONCLUSIONS

8'1
8.2

8.3

Diatomics
Ethane and Propane

Hexane and Flexane

APPENDIX 1

Link Cells

APPENDIX 2

Forces from the Dihedral Angle Potential

APPENDIX 3

Nearest Neighbour Tables

REFERENCES

{%{?5

241

242

243

246

248

249

253

254

261

262

264

268

271

272

273

274

278

280

282



LIST OF FIGURES

(The number in parentheses indicates the numbered page
preceding the figure)
Fig.2.1 (43) Periodic images in 2-dimensions.
Fig.2.2 (45) Lennard-Jones 12-6 potential.
Fig.2.3 (68) Euler angles.
Fig.2.4 (84) Lees—-Edwards boundary conditions.
Fig.3.1] (95) Model diatomic.
Fig.3.2 (100) n(¥) vs. 7” Chlorine, 1*=0.608, T~260K,
b, (- ~~- O == =},
Evan’s results (— A —),
Fig.3.3 (101) AG«B(t) and AD«B(t) vs. t,
chlorine, 1¥=0.608, T~260K, P~0.
Fig.3.4 (102) The normalized stress correlation function
Cg(t) vs. t, 1¥=0.608, T~260K, P~0, N=2048
Fig.3.5 (107) Aaaﬁ(t) and AD«B(t) vs. t,
chlorine, 1¥=1.0, T~260K, P~0.
Fig.3.6 (113) Ao«ﬁ(t) and AD«B(t) vs. t,
chlorine, 1¥-0.608, T~260K, P~1GPa.
Fig.3.7 (113) AaaB(t) and AD«ﬁ(t) vs. t,
chlorine, 1¥=1.0, T~260K, P~1GPa.
Fig.3.8 (118) n(») vs. 5%, 1*=1.0 (O) and 1%= 0.608 (4)

T~260K, P~1GPa.

%

Fig.3.9 (121) n(¥) vs. »°, 1%=1.0, T~260K, P~1GPa, (A).
Fit to the predictions of the theories of
Hess (——), Ree-Eyring (- - -) and

Kawasaki-Gunton (—+—+-),.

| :in ¥




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

(121)

(123)

(123)

(128)

(128)

(128)

(128)

(130)

(130)

(132)

(132)

n(¥) vs. ¥, 1%¥-0.608, T~260K, P~1GPa, (A).

Fit to the predictions of the theories of
Hess (——), Ree—-Eyring (- - -) and

Kawasaki-Gunton (—:—-=),

As fig.3.9 but excluding highest shear
rate point.

As fig.3.10 but excluding highest shear
rate point.

sz(?) vs. 7”, 1*=1.0 (0O) and
1*¥-0.608 (A), T~260K, P~1GPa.

D, (#)-1/3 vs. ¥ 1*21.0 (0O) and
1¥-0.608 (A), T~260K, P~1GPa.

D, (-1/3 vs. 5%, 1*=1.0 (0O) and
1¥-0.608 (A), T~260K, P~1GPa.
Dzz(y)—1/3 vs. ?”, 1*=1.0 (O) and
1¥-0.608 (A), T~260K, P~1GPa.

xg(#) vs. %, 1*<1.0 (O) and

1¥-0.608 (A), T~260K, P~1GPa.
0e(¥) vs. 7”, 1*=1.0 (O) and
1¥-0.608 (4), T~260K, P~1GPa.
Comparisons with the predictions of Hess’s

theory, 1¥=1.0 ¢ ) and 1¥=0.608 (- - -)

The normalised probability densities for

the direction cosines Q(D«) vs. Da

1¥-0.608, ¥=1.25%x10%%°s"%, T 260K, P 1GPa.

As fig.3.19 1%=1.0.

{x)




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

.21

.22

.23

.24

.25

.26

(132)

(132)

(136)

(1386)

(139)

(139)

(150)

(150)
(150)
(150)

(150)

As fig.3.19 1%-0.608, y=25%x10%%s"1.

As fig.3.19 1%=1.0, »=12.5%10*% %,

. . X_ _
LogioAP(y) vs. log1°7 , 1 =1.0 (—A—)
and 1¥-0.608 (- -0- -), T~260K, P~1GPa.

: . x_

LogioAU(Y) vSs. 103167 » 1 =1.0 (—A—)
and 1¥=0.608 (- -[0- -), T~260K, P~1GPa.
The radial distribution functions (rdf)
for the COM, G(R), and the sites, g(r),

1¥-0.608, (a) ¥=0.824x10%% %,

-1 1

(b) »=1.25%10%%"*, (c) y=25%x10'%"1,

T~260K, P~1GPa.

As fig.3.25 1%=1.0, (a) ¥=0.75%x10'% "%,

(b) »=5%10"%"*, (c) »=12.5%10'%s7*,

The radial distributioﬁ functions (rdf) for
the COM, G(R), and the sites, g(r),

ethane, T~200K.

The site-site rdf, g(r), propane, T~200K.
The end site-end site rdf, gAA(r), propane
The end site-centre site rdf, gAB(r),

propane.

The centre site-centre site rdf,gBB(r),

propane.

‘xi




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.14
4.15

4.16
4.17

4.18

(152)

(152)
(153)

(153)

(153)

(154)
(154)

(154)

(159)
(159)

(159)
(163)
(163)

Acaﬁ(t) vs. t, ethane, T~200K.

Estimates of Acxz(w) (=n(0)AY) are from
the fits of the non-equilibrium data to
the theories of Kawasaki-Gunton (- - - =)
and RE and Hess (——'—).

As fig.4.6 propane, T~200K.

Fit of Aaxz(t) to single a exponential

(- - =), ethane.

Fit of onz(t) to a single exponential
(—+—), propane.

The normalized stress correlation function
és(t) vs. t and its integrand, propane.
AD _(t) vs. t, ethane.

The principal axis vectors in the propane
model.

AD«B(t) vs. t, for the three principal
axes vectors of propane.

n(y) vs. ?”, ethane ([0) and propane (A).
n(y) vs. ?”, ethane (A). Fit to the
predictions of the theories of Hess (——),
Ree-Eyring (- - -) and Kawasaki-Gunton
e I

As fig 4.15 for propane.

Xd(?) vs. )"”, ethane (0O).

xd(?) vs. ?n, propane,

kp(O), ¥, axis (4), Zp axis (V).

fxid




Fig.

Fig.

Fig.

Figo

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

.19

.20

.21

.22

.23

.24

(166)

(166)

(170)

(170)

(170)

(170)

(174)

(181)

(181)

(182)

(183)

LogioAP(y) vs. log1°7, ethane (- - O - -)
and propane (—A—).
LogloAU(Y) vs. log1°Y, ethane (- - O - -)

and propane (—A—).

g(r) vs. r, propane )"=10125_-1 (—),
=0 (- - =).

g,,(r) vs. r, propane y=10*%s7t (—),
=0 (- - -).

gAB(r) vs. r, propane >"=10129»—1 (—),
=0 (- - -).

gBB(r) vVs. r, propane }"=10"2s—1 (—),

¥=0 (- - -).
The dihedral angle potential

®(x) vs. «®, Hexane, T=200K.

g(r) vs. r, hexane ( ) and flexane

(—+—=-), T~200K.

G(R) vs. R, hexane ( ) and flexane
(=+=-=), T~200K.
The orientational cross-correlation

)

function P,(R) vs. R, hexane (
and flexane (—-—-=), T~200K.
The probability density for the distance

between sites separated by two others

e(rys) vs. ry,, hexane ( ) and flexane

(=+=+=-), T~200K.




Fig.5.6

Fig.5.7

Fig.5.8

Fig.5.9

Fig.5.10

Fig.5.11

Fig.5.12

Fig.5.13

Fig.5.14

Fig.5.15

(183)

(183)

(184)

(184)

(187)

(187)

(187)

(192)

(192)
(192)

The probability density for the distance

between sites separated by three others

e(rys) vs. rygs, hexane ( ) and flexane
(=+=+=), T~200K.
The probability density for the end-to-end

separation of sites,

e(ryg) vs. ryg, hexane ( ) and flexane
(=+=—=-), T~200K.

The probability density for the outer
dihedral angle 9(“1,3) VS, &3 g ,

hexane (1) and flexane (2), T~200K.

The probability density for the central
dihedral angle p(a;) vs. «, ,

hexane (1) and flexane (2), T~200K.
9(«1’3) and p(x,), hexane, comparison with
'gas phase’ distribution (- - -),T~200K.
As fig.5.10 for flexane, T~200K.

e(ry,g), comparison with the ’gas phase’
distribution (- - -), hexane (1) and
flexane (2), T~200K.

The normalised dihedral angle correlation
function é«(t) vs. t, hexane, T~200K.

As fig.5.13 for flexane, T~200K.

The normalised dihedral angle cross-
correlation function é“ij(t) vs., t

flexane, T~200K.

;kiVi




Fig.5.16

Fig.5.17

Fig.5.18

Fig.5.19

Fig.5.20

Fig.5.21

Fig.5.22

Fig.5.23

Fig.5.24

(193)

(193)

(197)

(197)

(198)

(198)

(200)

(200)
(201)

The mean squared displacement of the
dihedral angles Rz(t) vs. t at short
times, hexane (1) and flexane (2), T~200K.
Rz(t) vs. t at longer times, hexane (1)
and flexane (2), T~200K.

The normalised velocity auto-correlation

function 5v(t) vs. t, hexane ( ) and
flexane (—+—-—), T~200K.

The mean squared displacement of the
centres of mass ﬁz(t) vs. t, hexane (1)
and flexane (2), T~200K.

The normalised auto-correlation function
for the velocity parallel to r,g

Cv"(t) vs. t, hexane (——) and flexane
(=+=—=), T~200K.

The normalised auto-correlation function
for the velocity perpendicular to ;e
CVl(t) vs. t, hexane (——) and flexane
(=—=-), T~200K.

The mean squared displacement (MSD) of the
COM, ﬁz(t), and its resolution parallel,
ﬁ:(t), and perpendicular, Ei(t), to rig,
hexane, T~200K.

As fig.5.22 flexane, T~200K.

The normalised force auto-correlation

function éF(t) vs. t, hexane ( ) and

flexane (~+—--), T~200K.

[PV




Fig.5.25 (201)

Fig.5.26 (202)

Fig.5.27 (203)

Fig.5.28 (203)

Fig.6.1

Fig.6.2

Fig.6.3

Fig.6.4

(207)

(213)

(214)

(214)

The normalised torque auto-correlation

function éT(t) vs. t, hexane ( ) and
flexane (—+——), T~200K.

The normalised auto-correlation function
for the end-to-end vector él(t) vs. t,
hexane (1) and flexane (2), T~200K.

The normalised stress correlation function
és(t) vs. t, (i) at short times, (ii) at
longer times and (iii) the integral of
és(t) vs. t, hexane, T~200K.

As fig.5.27 for flexane, T~200K.

The shear stress, axz(t), (4), and the
alignment, sz(t), (O), expressed as
fractions of the limiting long time
(70-120ps) values and plotted as a
function of time elapsed from the
imposition of a steady strain rate of

10 -1

10 The full and broken lines are

best fits to the form f(t)=1l-exp(-t/7),

(- - - 7=2.8ps, T=25ps).

n(y) vs. ?”, hexane (A) and flexane (0),
T~200K.

n(y) vs. ?”, hexane (A). Fits to the
predictions of the theories of Hess (—),
Ree-Eyring (- - -) and Kawasaki-Gunton

(= ==).

As fig.6.3 for flexane, T~200K.

[xvif

A




Fig.6.5
Fig.6.6
Fig.6.7
Fig.6.8

Fig.6.9

Fig.6.10

Fig.6.11

Fig.6.12

Fig.6.13

Fig.6.14

(216)

(216)

(216)

(216)

(217)

(218)

(218)

(221)

(221)

(225)

sz(7) vs. 7”, hexane ([J) and flexane (A)
T~200K.

Dxx(?)—l/3 vs. 7”, hexane ([0) and flexane
(A), T~200K.

Dyy(?)—l/3 vs. 7”, hexane ([J) and flexane
(4), T~200K.

Dzz(y)—l/3 vs. 7”, hexane ([0) and flexane
(4), T~200K.

The extinction angle €,(¥) vs. ?n. hexane
(0) and flexane (A), T~200K. Comparison
with the prediction of Hess’s theory,
hexane (——) and flexane (- - -).

The normalised probability density for the
x direction cosine p(Dx) vSs. Dx’ hexane (a)
and flexane (b), 7=2*10115—1, T~200K.

The normalised probability densities for
the y direction cosines p(Dy) vs. Dy, (1)

and the z direction cosines p(Dz) vs. D _,

z
(2), hexane (——) and flexane (- - -),

y=2x101*s™ !, T~200K.

LogioAO(y) vs. logioy, hexane (—[O—) and
flexane (- - A - =), T~200K.
LogioAP(y) vs. log1°7, hexane (—[—) and

flexane (- -~ A - =), T~200K.
g(r) vs. r, hexane (1) and flexane (2),

-1

y=2x10'*s™* (—) and y=0 (—-—), T~200K.




Fig.6.15

Fig.6.16

Fig.6.17

Fig.6.18

Fig.6.19

Fig.6.20

Fig.6.21

Fig.6.22

Fig.6.23

(225)

(226)

(226)
(227)

(227)

(231)

(232)

(232)

(233)

G(R) vs. R, hexane (1) and flexane (2),

-1

y=2%10**s"' (—) and $=0 (——), T~200K.

The directional distribution functions for
the separations of the COM in the three
orthogonal directions G(«) vs. «, for

=X (—), =Y (= =) and «=Z (- -), hexane
y=2x10''s"*, T~200K.

As fig.6.16 for flexane.

P;(R) vs. R, hexane,

-1

$=2x10**s™* (—) and y=0 (—-=), T~200K.

P,(R) vs. R, flexane,

y=2x1011s7?

(—) and =0 (—--=), T~200K.
The percentage change in the mean end-to-
end separation Ad;g(¥) vs. 7”, hexane (0)
and flexane (A), T~200K.

The probability density for the end-to-end
separation e(r;g) vs. r,g, hexane (1)

-1

and flexane (2), 7=2*10113 (——) and

¥=0 (=—-=-), T~200K.
The probability density for the dihedral
angle p(x) vs. «, hexane (1)

-1

and flexane (2), 7=2*101ls (—) and

y=0 (=—--), T~200K.
The difference between the probability
densities for the dihedral angle Ap(«) vs.

-1

«, at 7=2*10115 and =0, (a) hexane

and (b) flexane, T~200K.

Xviii
b




Fig.7.1

Fig.7.2

Fig.7.3

Fig.7.4

Fig.7.5
Fig.7.6
Fig.7.7

Fig.7.8

Fig.7.9

Fig.7.10

Fig.7.11

(246)

(246)

(247)

(248)

(250)

(250)

(253)

(253)

(253)

(253)

(258)

n(y) vs. 7”, hexane T~300K (A) and
hexane T~200K ([).

n(#) vs. 5%, hexane T~300K (A) and
flexane T~200K ([).

ﬁ(?) vs. ?”, hexane T~v300K (A). Fits to
the predictions of the theories of Hess
(—), Ree-Eyring (- - -) and Kawasaki-—
Gunton (~-—-—).

The extinction angle 0o (¥) vs. ?”, hexane
T™~300K ([J), hexane T 200K (A) and flexane
T~200K (V).

Log1°A¢(7) vs. logio?, hexane T~ 300K.
LogioAP(?) vs. 103107, hexane T~300K.

hexane,

g(r) vs. r,

y=2%10''s™! (—) and ¥=0 (—-), T~300K.

G(R) vs. R, hexane,
y=2%10**'s™* (—) and ¥=0 (—-), T~300K.
The directional distribution functions for

the separations of the COM in the three

orthogonal directions G(x) vs. «, for

=X (—), «=Y (—~ =) and o=Z (- -), hexane

1

y=2x10%*s™ !, T~300K.

P,(R) vs. R, hexane,

-1

¥=2%x10**s™* (—) and ¥=0 (—-), T~300K.

The probability density for the end-to-end

separation @(r;¢) vs. r,q, hexane,

-1

¥=2%x10**s"! (—) and ¥=0 (—-), T~300K.



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

A2.

.12

.13

.14

.15

.16

.17

.18

.19

(258)

(262)

(262)

(262)

(263)

(263)

(264)

(267)

(278)

The probability density for the dihedral
angle p(x) vs. o, hexane,

y=2x101ts”?

(—) and =0 (—-), T~300K.
g(r) vs. r, hexane (1) and flexane (2),
»=0 T~300K (——), T~200K (—-—).

G(R) vs. R, hexane (1) and flexane (2),
»=0 T~300K (——), T~200K (—-=).

P,(R) vs. R, hexane (1) and flexane (2),
»=0 T~300K (—), T~200K (—-).

p(x) vs. «, hexane (1) and flexane (2),
=0 T~300K (—), T~200K (—-).

e(ryg) vs. ryqg, hexane (1) and flexane (2),
»=0 T~300K (——), T~200K (—-).

The normalised correlation function for
the dihedral angle é«(t) vs. t, hexane (1)
and flexane (2) with fits to single
exponential, é«(t)=exp(—t/r), (- - =)

(1) T=17ps, (2) 7=0.32ps.

The normalised velocity auto-correlation
function 6V(t) vs. t, hexane (1) and
flexane (2), T~300K (——) and T~200K (—-)

The dihedral angle.



CHAPTER 1

INTRODUCTION

1.1 The Aims of this Work

Relating the properties of liquids to the structure of
the molecules of which they are composed has been the aim of
much experimental and theoretical research. The
identification of specific molecular characteristics which are
responsible for certain behaviour would obviously be of great
importance. The main difficulty, however, in this type of
research lies in distinguishing the effect of one molecular
characteristic on the properties of a liquid from all the
rest. Ideally we would like to observe the interdependence
between a particular macroscopic property and just one
molecular variable. 1In reality this is in general impossible
to realise due to the coupling between the molecular
variables. 1In practice it is possible to observe trends
within certain groups of compounds for many properties but
this does not necessarily lead to the determination of the
relative importance to a particular bulk quantity of the

characteristics which constitute the molecule in question.

The specific purpose of this work is to investigate how
the details of molecular interactions affect the rheological
properties of fluids, i.e. the properties of materials
undergoing deformation or flow. This has a particular bearing

on the lubrication industry where there is a constant need for




new lubriéants capable of working in more extreme conditions
of, for instance, high and low temperatures, high pressures
and high shear rates. Experimentally ;he measurement of the
molecular properties of fluids subjected to the extreme
conditions mentioned is extremely difficult using the
conventional techniques employed at equilibrium. Indeed,
investigations within this field of research are traditionally
carried out using either disc machines to model the
lubrication situation, or high frequency oscillating shear
equipment. These techniques have been mainly used to obtain
data concerning the pressure, shear rate and frequency
dependence of the viscosity of a wide range of fluids. Little
if anything, however, can be determined about the effects of

the applied conditions at a molecular level.

To try and obtain detailed molecular information computer
simulations using molecular dynamics (MD) have been carried
out [1]. In this method the classical N-body problem of a
particle moving in the fluctuating force field of its
neighbours is solved numerically with the aid of a computer.
This is achieved by integrating the equations of motion over a
small time interval (~ldﬂAs ) for a small number of particles,
N (typically N<1@0@ ), which interact through a known force
law and which are subject to specified boundary conditions.
Repeating this procedure produces a complete history of the
N-particle system's trajectory through phase space. Flow

situations have been modelled previously using MD by imposing




velocity‘gradients and it has been shown that even systems
consisting of simple spherical particles show qualitatively
similar rheological behaviour to that of much more complex
real molecules [2]. The main objective of this research has
been to extend these model studies to more elaborate types of
molecules with the intention of obtaining some insight into
the effect of changes in the molecular variables on the

macroscopic rheological properties of the liquids.

1.2 Experimental Studies

The need to acquire molecular information concefning the
rheological behaviour of liquids subject to extreme conditions
is the direct result of observations from studies carried out
on disc machines [}-5]. In these experiments two rotating
discs are loaded together in line contact with their axes
parallel. The surface of the cylinders are continuously
lubricated and the variation in the lubricant film thickness
and the traction between the cylinders are measured as a
function of the mean and relative circumferential speeds of
the cylinders and as a function of the normal load.
Originally [3] this form of equipment was designed to model
the lubrication situation found in gears and roller bearings.
This is generally termed elasto-hydrodynamic lubrication as

 the hydrodynamic pressures generated between opposing surfaces




‘can be large enough to induce appreciable elastic deformation
of the materials being lubricated. The initial results of
these studies [3] proved by resistivity measurements that a
film of lubricant did exist between the cylinders so that
there was no significant solid contact. Clearly the magnitude
of the film thickness is of great practical importance as this
will determine the rate at which the surfaces wear and thus
eventually fail. Consequently much of the effort in these
initial studies was spent in attempts to correlate
experimental findings with available theories of film
thickness [6 ]. The results of these studies have been
adequately reviewed in the literature [7,8] and the general
conclusion reached was that the film thickness could be
adequately predicted assuming that the liquid is Newtonian and

that the viscosity is a known function of pressure.

For the frict?onal traction these basic assumptions lead
to predictions far from the experimental results. The high
shear rates, — 10’s™* and the high pressures , ~1GPa,
involved and the actual duration of the transit, 1 — 10‘85,
make the situation difficult to treat theoretically [9]. This
is because the material parameters and functions required to
give a reasonable model description of the problem cannot
usually be obtained even from more controllable rheological
experiments. It was realised at an early stage [5] that the
behaviour of the lubricant differed markedly from the assumed

behaviour of n = /¥ , where o is the stress, which is related




to the frictional traction, and n and ¥ are the viscosity and

shear rate respectively, n(t)=xexp(-1/T) and N(P)xexp(P) .
It was noted that the viscosity depended upon the relative
motion of the cylinders i.e. sliding speed, which is
proportional to the shear rate, suggesting a non-Newtonian
relation between the stress and the shear rate i.e. n(¥). In
particular it was found that [5] thé apparent viscosity
decreased as a function of increasing shear rate, behaviour
known as shear thinning, to such an extent that it could not

be caused entirely by the viscous heating.

Since the early results of Crook [3] there have been
further reports of experiments performed using various kinds
of disc machines [7,8,10-16]. These have extended the range
of conditions over which the material properties have been
calculated and also varied the geometry of the contact zone as
well as increasing the number of different lubricants that
have been studied. Furthermore Johnson and coworkers [17,18]
have concluded that the behaviour of a fluid in an
elasto-hydrodynamic (EHD) contact can be adequately
parametrised using empirical relationships and data obtained
from sample trials on a simple two disc machine. For most
practical purposes a reasonable prediction of the behaviour of
a lubricant is all that is required but this provides us with
little or no understanding of the effects at a molecular

level.




To try and obtain information from a different source use
has been made of the connection between the behaviour of
fluids in oscillat%ng and continuous shear. In theory a
knowledge of the frequency dependence of the viscosity can be
used to predict the time dependence of the viscosity in
response to a shear rate, applied as a step function, by
Fourier transformation. This is oniy strictly true, however,
in the limit of small shear rates. Some models of
visco-elastic relaxation [19] predict a connection between the
viscosity in oscillatory shear and continuous shear at all
shear rates but if non-Newtonian effects begin to prevail the
connection becomes less cértain. Nevertheless these forms of

measurements have produced interesting results.

Until the introduction of piezo-electric transducers
[20,21] alternating shear methods of viscosity measurement
were restricted to, frequencies of less than 2*10* Hz [22]
using mechanical or electro-magnetic devices for wave
generation. To observe any elastic behaviour the reciprocal
frequency has to be of the same order as the characteristic
shear relaxation time of the fluid, Th! given by the
Maxwellian relation Tﬁ#VQ" . Typically Ge . the infinite
frequency shear modulus, is of the order of 10°pa for many
liquids [23] so only liquids of viscosities greater than
10*Pa s, e.g. polymeric liquids, could previously be studied.
This effectively excluded all simple liquids as their

viscosities tend to be less than 10 °Pa s. However, the




increased frequency range accessible using piezo-electric
transducers, up to 109Hz, allows the investigation of liquids
with viscosities ~“1Pa s. This is still higher than the
Viscositiés of many liquids but by increasing the viscosity
either by supercooling [22] or by increasing the pressure [24]
it has been demonstrated that the technique can be used even
for single component relatively simple fluids [25]. The
restriction being that the material does not crystallise as

the temperature is lowered or as the pressure is raised.

Measurements using this technique are generally made by
observing the change in phase and amplitude of shear waves
repeatedly reflected from the interface between a fused quartz
bar and the sample liquid as compared to that between a fused
quartz bar/air interface. This allows the calculation of the
shear mechanical impedance of the liquid and indirectly the
éomponents of the complex shear modulus, G¥(iw), and the
complex viscosity, n¥*(iw). 1In theory it is possible by
varying the value of w , the frequency, to obtain the shear
modulus and the viscosity over the entire frequency range.
However, in general experiments are performed at certain fixed
frequencies and the results obtained at different temperatures
and/or pressures are compared using the principle of
time-frequency reducibility [23]. This involves the use of a
reduced frequency W EWT which is varied not by changing the
actual frequency W but by varying Th which is a function of

temperature and pressure. Dyson [19] has compared the results




obtained from both oscillatory and continuous shear
experiments. At low shear rates or frequencies the agreement
is good as is expected theoretically (n(w) - = l\()’)y_,o = ny)
but as the frequency and shear rate are increased there is
less agreement. This makes it difficult to relate the results

from the two forms of experiments.

One interesting aspect of Barlow and Lamb's early work
[22] using oscillating shear techniques was their attempts to
relate the results for G¥(iw) to the components making up the
0il used. They arrived at assignations of broad frequency
regimes as major contributions to G¥(iw) arising from certain
components of the oil. This was, however, later shown to be
an over simplification by Hutton [26] who performed
experiments on some of the individual fractions. Much more
effort, however, has been put into explaining the results in

terms of models of visco-elastic relaxation.

There are several models which incorporate both elastic
and viscous responses to applied strain rates. These models
use as an analogy the response of a Hookean spring and a
‘dashpot', i.e. ©piston, to an extension to represent the
elastic and Newtonian viscous behaviour. The simplest of
these models is the Maxwell element which corresponds to a
spring and dashpot connected in series. This element will
thus exhibit viscous behaviour if it is extended slowly

elastic behaviour when it is quickly extended and a




combination of both in between. Although this model is
intuitively appealing and the response to both oscillatory and
steady shear rates can be readily calculated few liquids
actually behave in this manner. More complicated models can
be readily generated by adding further elements in parallel or
series to obtain more realistic responses but this procedure
is purely arbitrary and does not reveal any of the fundamental

processes governing viscoelastic relaxation.

A much more successful description of the viscoelastic
behaviour of real fluids has been found to be given by the BEL
model of Barlow, Erginsav and Lamb [27]. This model does not
have an analogy in terms of springs and dashpots but it was
originally arrived at by adding the reciprocal impedances,
1/Z) = particle velocity/-shear stress, for a purely elastic
element and a purely viscous element to obtain that of a
viscoelastic fluid. This model has been shown [28] to fit
accurately the results obtained for the shear mechanical
impedance from high frequency oscillating shear experiments.
The same equation has also been derived by Phillips et al [29]
using a defect diffusion model. Although this approach does
offer some understanding at a molecular level it is based on
the rather unphysical idea that molecular relaxation can only

occur when a defect or 'hole' diffuses to a neighbouring site.

In its original form the BEL model can describe quite

well the behaviour of many single component systems there are,



however, several deficiencies. For mixtures it has been found
necessary to include one [30] or even two [31] adjustable
parameters to adequately describe the response of these
multi-component systems. Secondly, it has been pointed out
[25,32] that there can be systematic deviations of the
predictions of the BEL model from the experimental results,
especially at low frequencies. Lastly, it has also been shown
that the BEL model predicts unphysical behaviour as the
frequency tends to zero for the first normal stress difference
[25] and for recoverable strain [33]. Consequentially the
failure of the BEL model at low frequencies is attributed to

its theoretical shortcomings.

One other equation which has been successfully applied to
model viscoelastic relaxation is that of Davidson and Cole
[34]. Originally used as an empirical equation to model the
results for dielectric relaxation it has been employed by
Davies et al [32] to describe their results obtained for a
number of pure fluids from high frequency shear experiments.
Although similar in some respects to the BEL model it does
contain three adjustable, though theoretically interdependent,
variables which have to some extent been correlated with
molecular sphericity and flexibility in a series of organic
molecules. In general the tendency towards sphericity has
been associated with a narrower distribution of relaxation
times whereas increased flexibility has been shown to some

extent to have the opposite effect of increasing the spread of

10




relaxation times. More specifically Kim [35] has discussed
the Davidson-Cole model in terms of the translational and
rotational relaxation times of molecules but reaches a similar

conclusion.

Interpretation of these models in terms of molecular
behaviour remains speculative as in general the dynamical
properties of the molecules comprising the fluid in question
are not known. Furthermore, even less is known about the
effect of applied conditions of high pressure and high shear
rate on the structural and dynamical properties of the fluid
and how this alters the rheological behaviour. For this
reason comparisons made between experiments performed using
oscillating shear, where the fluid is assumed to be close to
equilibrium, and continuous shear, where the fluid can be far
from equilibrium, can only give qualitative information as the

experiments are performed on effectively different liquids.
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1.3 Simulation Studies

An alternative to the methods already discussed for
determining rheological behaviour is that of molecular
dynamics (MD). Although few studies [1,2] have specifically
set out to correlate the rheology of real and model liquids
there has been a good deal of effort put into the evaluation
of the viscosity of model liquids which has indirectly
produced results of interest concerning the visco-elastic and
non-linear effects which are of primary importance to the

problem in question.

Originaily MD calculations were performed on systems
consisting of spherical particles which interacted through
discontinuous potentials [36]. Later techniques were
developed for employing realistic continuous potentials [37]
and eventually methods were devised for modelling molecules
with rotational degrees of freedom [38,39,40] and ultimately
molecules containing internal modes [41]. The advantage of MD
over other computer techniques, e.g. Monte-Carlo [42], is
that it provides not only static equilibrium properties but
also a complete record of the dynamical evolution of the
system. The dynamics of the system are directly responsible
for the fundamental processes of mass, momentum, and energy
transport which can be described as processes which strive to
make the intrinsic state variables independent of position.

On a macroscopic scale when averages of state variables are

12




functions of position gradients will exist. If the system is
close to equilibrium any gradient, G, of a state variable will
be related to its conjugate flux, Q, by a linear relationship
of the form Q=CG. C, the constant of proportionality,
determines the rate at which the system approaches equilibrium
and is called the transport coefficient. In the case of
momentum transport the gradient is the shear rate, ¥, the
conjugate flux is the stress, o, and the transport coefficient

is the shear viscosity, n, o=nY.

In equilibrium molecular dynamics (EMD) the state
variables are not on average functions of position so
consequently gradients do not exist and the viscosity cannot
be calculated from the simple relation given. However, in a
system fluctuating about its equilibrium state fluxes will be
spontaneous and short lived. The theoretical treatment of
such fluctuations has been accomplished notably by Green [43]
and Kubo [44] with the result that a transport coefficient can

be written as the integral under the appropriate correlation

function [45]. 1In the case of shear viscosity
(]
_Vv
n= iz | <og@a ) at (1.3.1)
o

where V is the volume of the system, T is the temperature and
<o_.(0)o__(t)> 1is th tress correlation function. o i
ap() «B() s e s & i ction xg 1S an
off-diagonal component of the microscopic stress tensor

defined as
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where mj, p; and R; are the mass, momentum and position of the

i

centre of mass of molecule i , R;j; =Rj -~ R; and Fj; is the

force on molecule i due to molecule j.

The first attempt at calculating the shear viscosity from
EMD simulations was made by Alder, Gass and Wainwright [46] on
a system of hard spheres. They did not use the Green-Kubo
expression, eqn.l1l.3.1 ,but the equivalent Einstein expression
[47] which relates the viscosity to a mean squared centre of

momentum displacement

N

o 1
n=lim . FvkTt <[ }
iz

whrere pj is the momentum of particle i and'a,B = X,Y,2Z.

Poc; ()R, (t) - Pai(o)Rpi(o)} >
1

The first calculations for systems interacting through
continuous potentials were made by Levesque et al [48] on
model liquid argon. Their results and those of subsequent
studies [49,50] have gone to underline the difficulty of
obtaining the stress correlation function to sufficient
accuracy for the length of time required to obtain a limiting
value for the Green-Kubo integrand. As the stress is an
N-particle property there is only a limited amount of

averaging available from a MD simulation as compared to a
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single particle property. The only way of obtaining better
results is to either increase N or to integrate the equations
of motion for a longer amount of time. However, even runs of
109,000 time steps have proved insufficient [48] due to the
apparent correlations which persist for long times, the so
called ‘long time tail' to the stress correlation function.
The resulting viscosities obtained from these calculations
have been found to give [48-50] qualitative agreement with the
viscosities of the real fluid the potentials used are
modelling, even though the potentials used are invariably
fitted to the static properties of the liquid rather than the

dynamic properties.

Although this method is impractical for producing precise
values of the viscosity it does give good results for the
short time behaviour of the stress correlation function. As
it" is the integral of the stress correlation function which
determines the response of a liquid to a step function
increase in shear rate it is of fundamental importance as it
provides a direct test of models of visco-elastic relaxation
which can usually only be tested in frequency space as the
stress response function is generally unobtainable directly
from experiments on real fluids. Furthermore, the zero time
value of the stress correlation function is related to the
infinite frequency shear modulus through the equation [51]

v

_ v 2
Ge = *T <°aB(0)> .
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Ge 1is an important viscoelastic parameter as combined with
the viscosity it determines the characteristic, or Maxwell,
relaxation time of the fluid Ty, = N/Ge - JIn real liquids it
is determined from data obtained in oscillating shear
experiments [23]. As already described these experiments are
limited in the range of conditions at which they can be
performed thus the variation of Ge with temperature and
pressure etc. is not generally known. In contrast to this it
is theoretically possible to evaluate Ge of a model liquid at

any state point.

The problem of obtaining results of reasonable precision
for the viscosity led to the development of different
techniques for evaluating transport coefficients. The general
idea behind this new approach was artificially to perturb the
MD' system and then to use the Navier-Stokes equations of
macroscopic hydrodynamics [52] to determine the viscosity.

The perturbation that is applied also prevents the system from
attaining equilibrium and thus these methods are generally

referred to as non-equilibrium molecular dynamics (NEMD).

One of the first successful applications of NEMD was that
of Gosling et al [49] who devised a method to measure the
shear viscosity of argon modelled by a Lennard-Jones 12-6
potential. In their method the particles are subject to an

additional external force which acts in the x-direction but
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depends upon the particles z-coordinate,
Fy(Z) = Fgsin(2mnZ/L)

where L is the length of the MD cell, Fq is a constant and n
is an integer. This type of force is consistent with the
periodic boundary conditions as Fu(L) = Fy(0) = 0, The solution
of the Navier-Stokes equation_involving an external force

indicates that a sinusoidal drift velocity,
Uy(Z) = Upsin(2mnZ/L) ,

is set up. Determination of the amplitude, U,, after steady
state has been achieved, allows the determination of the
viscosity from

eL%F,
r\ =

ann’m

where m is the mass of an atom. Reasonable agreement was
achieved with experimental studies over a range of state
points for which the viscosity varies by a factor of 8.
Difficulties arose , however, from the need to use a value for
Fo large enough to produce a measurable response in such a
small system. It was found that Fg had to be of the order of
1/19 of the root mean square intermolecular force before an

acceptable signal-to-noise ratio was achieved unfortunately

this resulted in the temperature of the system rising rapidly
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by 19's of degrees K within times of ~10 % . Higher values

of F, were found to produce more precise results for the drift
velocity but also caused the system to heat up more rapidly
due to the greater amoﬁnt of work being done. One other
factor that had to be taken into account was the fact that the
equations used are strictly true only in the long wavelength
limit i.e. as k—@, where k=2m/L . Indeed it was found by
Gosling et al [49] that their results for n were significantly
reduced by increasing the wave vector, k, by a factor of two.
Nevertheless, the results obtained were considered to be as
precise as those obtained from the Green-Kubo formulae which

used ten to twenty times the amount of computing time.

At about the same time alternative methods of NEMD were
being pioneered by Ashurst and Hoover [53]. They decided to
abandon the usual periodic boundary condition in an attempt to
simulate planar Couette flow, i.e. the flow of a fluid
between parallel plates moving relative to each other at a set
distance apart. They first experimented with hard and
repulsive walls in the positive and negative z-directions but
unacceptable density gradients were imposed on the system.
Eventually they used a system which was periodic in the +x and
+y directions but which was bounded in the +z-directions by
extra layers of particles of thickness dz. dz and the number
of particles in the ‘fluid walls', Ny, was chosen so as to
maintain the same density as the bulk. Any particle

attempting to leave either of the three regions through a z
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face was reflected back into the same region simply by
reversing its z component of velocity. To impose a velocity
gradient on the bulk the velociﬁies of the particles in the
wall regions‘are scaled continuously to maintain a constant
wall velocity of opposite sign in the two regions. At steady
state a linear velocity profile should be set up between the
walls through the bulk and the sum of the forces on the
particles making up the walls due to those in the bulk is

equal to the wall shear stress times the area of the xy plane,

osz . The shear viscosity can then be calculated from the
du,,
mean velocity gradient, <az->::<y> , and the mean shear

stress as

n = <oxz>/<7)

This method alleviated the problem of viscous heating as the
particle velocities in the fluid wall could be scaled to
maintain a constant temperature in these regions with the
effect that heat is removed from the bulk. Result for n
obtained using this method for LJ argon and the soft sphere

fluid ( ®(r)er *2

) were found to depend upon the shear rates
used and also the system size. However, using simple
relationships to correct for infinite size, i.e. k=0, and
zero shear rate they achieved good agreement with experimental
data for argon. It was further noted that shear rates in
excess of 10'%7* , far beyond the range of real experiments,

were required to separate the responses of the system to the

shear flow from the natural fluctuations inherent in small
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sample sizes.

The main disadvantage of the 'fluid' wall method is the
dependence ﬁpon the width of the system, which is effectively
a number dependence. Hoover and Ashurst found that [53] the
viscosity of LJ argon, close to the triple point, determined
with N=108,216 and 324 particles i.e. widths of L, 2L and 3L,
differed from each other, systematically decreasing with
increasing width. To avoid extrapolations to zero k most
subsequent NEMD calculations of the shear viscosity have used
the boundary conditions first suggested by Lees and Edwards
(LE) [54]. There innovation was to apply a linear velocity
profile to the primary MD cell whilst maintaining consistency
with the usual periodic boundary conditions. For a shear in
the xz plane it involves the translation of periodic images
above (below) the primary cell in the positive (negative )
x-direction a distance #Lt , where L is the length of the MD
cell and t is the time into the simulation. This effectively
reduces the width dependence as the velocity profile stretches
to infinity in both the +z and -z directions. In the +x and
+y directions normal periodic boundaries are retained.
Particles crossing the +z boundaries are displaced a distance
FY¥Lt in the x-direction on re-entering through the ¥z faces.
The actual shearing of the particles can be achieved in two
ways. Firstly, a displacement ¥(Z-L/2)At can be added to each
particle at every time step or alternatively allowing the

z-axis to vary as a function of time  such that the angle o
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between the z-axis at time t=0 and some later time t=t is
given by [55]

e = tan 1(¥t) .

This type of homogeneous shear NEMD (HSNEMD) has been used
since by Naitoh and Ono [56] to obtain the viscosity of a
system of hard spheres and by Heyes et al [1,2] who made a
detailed study of the changes in the structural, thermodynamic
and dynamic propefties of the LJ argon system subjected to
high shear rates at high densities. A refinement of the basic
HSNEMD algorithm has been developed by Evans [55]. This takes
into account the fact that the shear rate, as determined from
the particle velocities, fluctuates spontaneously in small
systems. Whereas the method previously described assumes that
these fluctuations average to zero Evans method suppresses
them by altering the velocity of each particle in such a way

that a linear least squares fit to the shear rate,

N N

. 2

Yy = } inzi } Zi '
i=1 i=1

returns the required value for y. The viscous heat generated
is also removed by simulated contact with an ideal heat bath,
i.e. scaling of the momenta. Using this method Evans has
determined the rheological behaviour of soft sphere mixtures
[(57] ,LJ argon [58], soft discs [59], and various polyatomic
fluids [55,68,61]. Strict control of the shear rate also

allows it to be made a function of time and Evans [55] has
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also demonstrated the practicability of evaluating the
frequency dependence of the shear viscosity by applying an

oscillating shear rate.

More recently Hoover et al [62] have proposed
modifications to Hamiltons equations of motion based on the
Doll's tensor, L gp , formulation to produce a shear flow
driven by a fictitious external tensor field. This method
still requires the use of translating image cells or time
dependent axes and not surprisingly results obtained using
this and the other ﬁomogeneous shear variants compare well
[62]. Evans [63] and Hoover [64] have also discussed further
modifications to Hamilton's equations of motion which allow
certain ensemble properties to be exact constants of the time
evolution of the system. So far these 'damped force '
equations have been used in MD by Hoover, Ladd and Moran [65]
and Brown and Clarke [66] to constrain the temperature and by

Evans [63] to constrain the internal energy in HSNEMD

calculations.

In the non-equilibrium techniques so far outlined the
gradients that have had to be épplied are so large that the
measurements made are inevitably in the non-linear regime.
This is evident from the often pronounced ¥ dependence of the
shear viscosity, the pressure and the energy that has been
found in all HSNEMD calculations so far. This in itself is of

considerable importance but the main reason for developing
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NEMD was to obtain the zero shear viscosity. To avoid the use
of large gradients Singer, Singer and Fincham [67] adapted the
perturbation method of Ciccotti et al [68] to be used in
conjunction with the Lees-Edwards boundary conditions. The
basic idea of this method is to obtain the difference in
stress between two trajectories in phase space starting from
the same point, one unperturbed and one slightly perturbed by
a small shear rate, Ay ~ 1s. This can be achieved either by
actually computing both trajectories in two separate MD runs
Oor more efficient}y by using a Taylor expansion, truncated
after the linear terms, of the Hamiltonian in terms of the
perturbed coordinates. The response obtained has been shown
[68] to be equivalent to, at least in theory, the usual
Green-Kubo stress correlation function and as such can be used
to calculate the viscosity. This method relies upon the
cancellation of correlated noise due to the proximity of the
two trajectories in phase space. Eventually these paths must
diverge exponentially and the response becomes swamped in
noise. This means that averages have to be taken over a
number of different starting points to obtain reasonable
results. Unfortunately the perturbation approach has proved
only to be successful in the case of LJ argon [67,69]. For
molecular fluids, except at low densities, the long stress
relaxation times cause the response to become lost in noise
long before the 'plateau' region can be observed [780]. Some
improvement can be made by applying delta function rather than

step function [71] perturbations but in general the cost in
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terms of computer time make it no more efficient than the
usual Green-Kubo method. Where comparisons have been made
between the two [71] the short time behaviour of the
correlation functions are in reasonable agreement with the
difference between the two being either statistical or
possibly due to the fact that in the perturbation approach the
correlation function evaluated is at zero k whereas in the G-K
method the lowest k value is determined by the dimensions of

the MD cell.

1.4 Results from and Conclusions of Simulation Studies.

The application of MD to the study of the flow properties
of liquids has produced information in areas where previously
little, if any, had existed. Single component liquids of low
molecular weight have often been considered as 'simple'
liquids which to all intent and purpose behave as Newtonian
liquids. Experimentally this is generally the case as the
time scales involved are much longer than the Maxwell
relaxation time and thus the frequencies and shear rates
available to real experiments are much lower than the
reciprocal characteristic relaxation time. What MD has
predicted is that phenomena such as viscoelasticity, shear
dilatancy, shear thinning and normal pressure differences are
common to all, even the 'simplest', of liquids. Furthermore,
information not generally available from conventional

rheological experiments, such as shear reorientation and the
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structure of liquids under shear, has also become available

through the use of MD.

The property which has received most attention in NEMD
calculations is the shear rate dependent viscosity, n(¥).
This is not surprising as the determination of the zero shear
rate viscosity has been the primary aim of most studies of
this kind and the shear rates used have ensured its
non-linearity. Consequently interest has centred on the form
of n(¥) and the best way to extrapolate back to $=0. Ashurst
and Hoover [72] used the Ree-Eyring (RE) theory of rate

activated processes [73] prediction

n(») = n(0)sinh ' (3T)/(3T) ‘ (1.4.1)

to fit their data for argon. Later Naitoh and Ono preferred
to use an asymptotic relation

limg n(¥) = n(0) - a¥*

(1.4.2)
, due originally to the mode coupling theory of Kawasaki and
Gunton (KG) [74], for their calculations on hard sphere
systems. Ashurst and Hoover later pointed out [75] that
Naitoh and Ono's data could equally well be fitted using the
RE inverse sinh curve. Evans [58] repeated and extended the
measurements made previously [72] on the LJ argon system,

close to the Triple point , to much higher shear rates. The
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results appeared to indicate a clear vindication of the y”

dependence (KG) despite its non-analytic nature, i.e.

lim; an(»)

_’o .
70 4y

Further supportive evidence has also been found in the shear
rate dependence of the viscosity of soft spheres [76] and for
LJ argon at a different state point [77] and in two dimensions
for soft disks [59] where KG theory predicts a logarithmic
dependence of n upon ¥. For molecular systems the square root
dependence has only been shown to fit for low density systems
where there is little shear thinning [60,70]. For a dense
model fluorine system [70] a systematic departure from the

iﬁ dependence was noted at the higher shear rates used.

For all the results mentioned measurements have only been

10 12 -1

made in the region of y=10""510""s , due to the loss
of response at the lower shear rates and the excessive
temperature increases at the highest shear rates, which is
only a small part of the available range. This casts an
appreciable amount of doubt on the validity of extrapolating
back to ¥=0 using the square root law , or. any other proposed
functional form. Furthermore, the non-analytic nature of the
KG theory means that as -0 %%-rw . This behaviour has
never been observed experimentally in real systems though in

general the magnitude of the viscosity change involved may be

less than can be measured.
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For real shear thinning fluids many empirical expressions
have been used to correlate n(¥) data [78] but there are
relatively few which have been derived from molecular type
theories. In a series of papers [79,80,81] Hess has developed
a theory to describe the non-equilibrium behaviour of the
alignment of molecular liquids. By considering the energy and
entropy contributions due to alignment and by formulating
constitutive laws Hess derives two coupled inhomogeneous
relaxation equations for the pressure and alignment tensors.
Their subsequent solution for the case of Couette flow results
in a prediction for the non-linear dependence of n upon ¥ of

the form
N = n<o>[1 - k(3T 3/(R? + <9r)2>] (1.4.3)

where T is a relaxation time and k and R are combinations of
unknown coefficients but for fluids where there is no
transition to a liquid crystal phase R=1 [80]. Unfortunately
this theory does not apply for molecules which cannot align
and as such cannot be tested against the simulation data for
argon. Hess has, however, considered the case of spherical
particles [82] by examining the dynamics of the pair
correlation function under the influence of a velocity field.
The analysis again leads to an expression governing the rate
of change of the pressure tensor and its solution for the case

of Couette flow implies that
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N = n@) /(1+FTY ) : (1.4.4)

where T is the Maxwell relaxation time. Hess's predictions
remain to be tested thoroughly against either real orvcomputer
generated results but the indications are that for monatomic
fluids Hess's curve is at odds with the apparent }”

dependence.

More recently two papers have appeared [83,84] which have
presented a theory of non-newtonian fluid behaviour, derived
an expression for n(¥) and then compared it with the NEMD
results of Heyes et al [1], Ashurst and Hoover [75] and Evans
[58]. Quentrec [83] uses linearized local order theory to
derive an expression for n(¥) which is very similar to that

obtained by Hess [80]
e ’ 2 . 2
N = o)1 - kg + BT - (1.4.5)

Quentrec further derives expressions for kg and Tq in terms of
measurable equilibrium properties . Eu [84] uses the
Boltzmann equation, and its generalization to dense fluid
systems, as a starting point for his treatment but obtains an

expression identical to that previously due to Ree-Eyring £73]

n(») = n(0)sinh™*(37¢)/(FTe) (1.4.6)

Eu's expression differs from Ree-Eyring in that the value of
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Te is defined absolutely from known parameters whereas T is
generally treated as an adjustable parameter in the RE
formulation. In comparing their expressions with the
simulation data both find satisfactory agreement desbite the
fact that neither has realised that the results of Evans are

quoted as a function of the irreducible strain rate

dy
_ 1 duy .
( = 3 dy for flow in the XY plane ) whereas Heyes et al

[1] and Hoover and Ashurst [75] quote results in terms of

du
= SX &
¥ dy

The rather confusing state of affairs concerning
egqns.l.4.3 and 1.4.5 where one theory, only applicable to
alignable molecules, predicts the same result as another
theory ,only applicable to spherical molecules, is further

complicated by considering the Cross equation [(85]
() = n0) + ((0) - n(=)/(L + T
substituting n(») = n(0)(1 - k) and rearranging gives for M=2
n(e) = n(O)[l - k(M3 + (;1)2)] (1.4.6)

Once again the same curve is recovered. The Cross equation is

theoretically based on [86] the assumption that shear thinning
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is a result of deflocculation in polydisperse systems and it
is found to be quite successful at describing the n(¥)
behaviour of many complex systems [86,87]. For monodisperse
systems the exponent M is generally taken to be eqﬁal to 1 not
2 so although it is interesting to note the equivalence of the
mathematical formulae it would be unwise to use any apparent
fit to this form of equation to vindicate any of the
assumptions or methods used in the formulation of these

various theories.

Apart from the changes induced in the off-diagonal
elements of the pressure tensor by shear a common observation
made in many HSNEMD simulations has been the increase in the
hydrostatic pressure, P = %(Pxx*'Pyy*'Pzz) , with also

(Pyy> #<{Pyy>#<Pzz> . These normal pressure (or stress)
effects are of interest as they are known of in real fluids
[88] but have not been characterized at a molecular level.
The increase in hydrostatic pressure in HSNEMD simulations is
associated with the behaviour known as shear dilatancy.
Technically shear dilatancy refers to the increase in volume
which occurs when a material is sheared but as most HSNEMD
calculations performed to date have been at fixed density the
effect manifests itself through an increase in the pressure.
In rheology there has been some confusion over the term
'‘dilatant’® [89] as it has often been used to describe fluids
whose viscosity increases with increasing rate of shear ,

shear thickening. What MD has shown is that shear thickening
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and shear dilatancy are separate phenomena as simple fluids
.like LJ argon, exhibit both shear thinning and shear

dilatancy if sheared at high enough rates.

In a series of papers Evans and Hanley [90,91,92] have
attempted to rationalise the behaviour of shear induced
pressure increases, and the related effect of internal energy
increase, within the framework of thermodynamics. They
postulate a change to the first law which allows for the shear
rate to become an extra state variable. In this formulation
it is assumed that P(¥) is a known function at constant

temperature and density. Specifically

W

limg, _ P(¥) = P(0) + P, 1312 (1.4.7)
where P, is a state dependent constant. This equation is
originally due to the same theory of Kawasaki and Gunton [74]
which predicts a 9# dependence of Nn(¥). As for the case of
n(¥) the actual predicted values of the coefficients P; and A
in eqns.l1.4.2 and 1.4.7 are not in agreement, by two orders of
magnitude, with the results of NEMD calculations [93] although
at least in the case of LJ argon the predicted dependence has

apparently been observed [94].

The main consequences of the generalized first law and
the results of consistency checks have been reviewed

previously [93,94]. Numerical tests on LJ argon [90] have
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provided qualitative agreement with experimental findings that
imposition of Couette flow can alter the position of phase

boundaries.

Apart from being able to provide information on the shear
dependence of bulk properties MD has the unique ability to
also allow a detailed and direct analysis of the microscopic
consequences of the previously described macroscopic effects.
At equilibrium the structure of the fluid is characterized by
the radial distribution function, g(r), where r is the scalar
separation of two particles. 1In a system under shear g(r) is
no longer a simple scalar function due to the distortion set
up by the flow and instead becomes g(r) , where r is the
vector separation. Various methods of representing g(r) have
been discussed in terms of expansions about the equilibrium
g(r) [1,56,95,96] and have been accompanied by the results of
NEMD calculations of the relevant functions for monatomic
fluids. There is a consensus between the three studies as
each shows that in the plane of the shear there is a net
reduction of the number of particles on the inside of each
coordination shell, with a corresponding increase on the
outside, for the positive first and third quadrants. For the
other two quadrants the opposite occurs. Heyes et al [1] have
gone on further to discuss the time dependence of g(r)
following a step function increase in shear rate. They
conclude that the structural reorganization having the

symmetry of the plane of shear, xz say, is faster than that
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having x*, y* or z* symmetry. Furthermore, the reorganization

having x* or z*> symmetry attains steady state faster than that
having y* symmetry. This is obviously of importance as the
time dependence of g(i) is closely linked to that of the
pressure tensor. It is also interesting to note that
measurements of the directional number densities under shear
[1] show some tendency for atoms to form layers normal to the

plane of shear in monatomic fluids.

Associated with the anisotropic structural rearrangements
under shear are the consequent effects on the single particle
dynamics of the system. Naitoh and Ono [56] computed the
shear rate dependent self-diffusion coefficient in the
directions perpendicular to the direction of flow and detected
a systematic decrease in magnitude with increasing sheaf rate.
However, as their calculations were not isothermal the
diffusion coefficients had to be corrected for the temperature
difference. Heyes et al [1] calculated the diffusion
coefficients, excluding the shear component, in all three
directions for LJ argon at a number of densities and shear
rates. Isothermal conditions were maintained throughout so
the diffusion coefficients obtained were not subject to errors
in extrapolation. At equilibrium all three were found to be
equal, as must obviously be the case, but under shear the two
in the plane of shear increased more than that normal to the
plane. This result is more in agreement with the intuitive

argument that a decrease in viscosity is accompanied by an
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increase in fluidity.

Although most NEMD simulations to date have concentrated
on atomic systems thefe is increasing interest in the effect
of shear flow on molecular fluids. Unlike atomic fluids
molecular fluids have extra degrees of freedom which allow
orientations and, in flexible molecules, conformations to
couple to the velocity gradient. The first of these, shear
induced realignment, is well known in real fluids as it gives
rise to the optical property of first order shear
birefringence. Less well understood is the ability of shear
fields to induce conformational changes in the structure of
the constituent molecules. This is an important consideration
as shear flows are often used to measure the viscosity of
polymers and it is often assumed in the analysis of the data
[97,98] that these large molecules do not undergo |

conformational changes in the presence of a velocity gradient.

These effects have been studied in several NEMD studies.
Evans [60] has subjected a model diatomic chlorine fluid to
homogeneous shear and has noted the preferred alignment of
molecules in the positive first and third quadrants of the
plane of shear. As for the monatomic fluids chlorine also
exhibits shear thinning and shear dilatancy but as the
simulations were carried out at a relatively low density there
extent was not as pronounced. Allen and Kivelson [78] have

also applied the HSNEMD algorithm to fluorine and carbon
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dioxide modelled by two centre LJ models. They also used the
perturbation technique as refined by Singer et al [67] to
measure the stress and aligment response functions and to
attempt to obtain thé zero shear rate viscoéity. Their main
interest was, however, in evaluating the parameters which
appear in and testing the predictions for the time dependence
of the stress and orientation of their generalized
hydrodynamic theory of transverse motion in molecular fluids.
They conclude that the theory provides a semi-quantitative
description of the time resolved responses examined. They
further conclude that the evaluation of the zero shear
viscosity from the perturbation technique becomes impractical
as the density is increased as the relaxation times for the
stress and reorientation become longer than the time for the
trajectories to diverge to such an extent as to swamp the
response in noise. At lower densities this is less of a
problem but then the steady state method is even more
efficient as there is less shear thinning so extrapolation to
¥=@ is not as problematic as at higher densities.
Interestingly the stress and the orientation evolve on é
similar time scale for these model fluids of small anisotropy
although initially the stress responds rapidly to the step in
shear rate before tending to the long time limit whereas the

orientation responds more gradually.

NEMD calculations on molecules with internal degrees of

freedom have been limited to one study of small alkane like
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molecules by Weber and Annan [99]. They have applied the
sinusoidal force method [49] to two and three LJ centre models
of ethane and propane. The propane model additionally
included é bond angle potential with minima at 199" and 184 to
allow a small degree of flexibility. Not surprisingly the
application of a sinusoidal shearing force to the propane
fluid did not produce any change in the proportions of
conformers since their equilibrium run of 25ps had only
produced one transition. They did note significant alignment
in both the ethane and propane simulations with the direction
of flow and between molecules. Overall their results are
fairly inconclusive, as far as the response of flexible
molecules to shear is concerned, as they are based on short
runs, 5ps, with unrealistic flow fields on a not particularly

flexible molecule.

These simulation studies have provided much of the
essential ground work for what follows. The methods used in
this work have already been introduced in this section and
their exact details are given in chapter 2. Some of the
issues raised in this section will form a recurring theme
throughout. What is novel in this work, however, is the
approach used whereby the effect of certain parameters has
been investigated by way of comparisons between similar

molecules. Thus, in chapter 3 results of simulations on
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chlorine type diatomic molecules of‘differing anisotropy are
given. In chapter 4 the effect of going from two to three
site models is investigated and in chapters 5,6 and 7. the
question of how important is the flexibility of a polyatomic

molecule with respect to its rheological properties is

addressed.
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CHAPTER 2
METHODS

2.1 Molecular Dynamics

All the methods to be used throughout this work fall
under the general heading of Molecular Dynamics (MD). In MD
the classical equations of motion for a small number of
particles (N), typically!' 10 < N (}Qj, are solved numerically
subject to specific bouné;;;géonditions. Interactions between
particles are specified by well defined potentials which
generally take the form of effective pair potentials which do

not necessarily represent the interactions of isolated pairs

but at fluid densities incorporate the effects of the three,
four, five etc. body terms. This simplification reduces the
number of interactions to be computed to manageable
proportions. Without it the cost of computing all significant
contributions to the potential energy would make MD
impracticable. At least in the case of argon an effective

potential of the familiar Lennard-Jones (LJ) 12-6 form

o -l '] ? .11

+including short range repulsive and long range attractive
terms, has been found to give a good representation of the
Noble gas fluid at a wide range of temperatures and densities
[108] with an appropriate choice of the well depth, €, and

collision diameter, o. The LJ 12-6 potential is certainly not

38



the only one to be used in MD calculations but its simplicity
and flexibility make it a natural choice when only bulk
properties are trying to be reproduced rather than the form of

the individual interactions.

Conventionally equilibrium molecular dynamics
calculations are carried out at constant volume, V, which
means that, as N is fixed, the number density, p=nﬂt’, is
also constant. If the potential is conservative then the
total energy of the system, kinetic plus potential, must also
be conserved. To obviate a large surface area to volume ratio
what are known as periodic boundaries are generally used.

This in effect means that the primary cell is reproduced to
infinity in three spacial dimensions so that it is surrounded
by 26 images of itself , in three dimensions, generated simply
by translation of the coordinates a cell length distance
orthogonal to the edges of the cell. To maintain constant N
particles leaving the primary cell are replaced by the

appropriate incoming image particle.

With the constraints of constant N,V and energy, E, the
MD cell would correspond to the microcanonical ensemble of
statistical mechanics but the periodic boundaries force a
fourth constraint on the system that of conservation of linear
momentum. Thus this ensemble is sometimes referred to as the
MD ensemble. Usually the sum of the momenta is set to zero

initially in a MD calculation and its constancy, and that of
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the total energy, is used as a measure of the accuracy to

which the equations are being integrated.

2.2 MD for Atomic Systems with Continuous Potentials

The method of molecular dynamics originally described by
Alder and Wainwright [36] for use on systems of hard spheres
differs in the integration of the equations of motion quite
markedly from that for systems where continuous potentials are
used. In hard sphere systems the forces are impulsive and act
instantaneously when a collision occurs. Between collisions
particles move in straight lines so the problem of solving the
equations of motion reduces to one of obtaining the shortest
time interval to the next collision. Once this has been found
all the particle positions can be updated by the same time
interval. This makes hard sphere calculations particularly
efficient at traversing phase space and also very accurate as
there are no errors in the trajectories calculated. Rahman
[37] was the first to demonstrate the use of continuous
potentials in MD. As the particles are subject to forces,
hence accelerate, at all times the problem becomes one of how
best to approximate the trajectories of the particles or in
other words how to solve numerically the classical equations
of motion of the N particles. The usual way of solving
differential equations numerically is by finite difference

techniques which involve the use of a fixed timestep, At.

Many such schemes have been suggested, e.g. [101], for
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integrating Newton's classical second order differential
equation of motion

Eiemry

i
where Ei“, m; and rj are the force on, mass and position of

particle i and the two dots refer to the second differential
: 2
. dr ;
w.r.t. time , - ¥ =-—§ . One such scheme which has
dt
become very popular is that first used by Verlet [162] and

results from Taylor series expansions of rj(t+At) forwards and

backwards in time about rj(t).

ri(t+At) = ri(t) + £3(E)At + ry(t)At%+ £ (£)AtS+ .- (2.2.1)

2! 3! #

|

rj(t-at) = ri(t) - B3()At + ry(£)At5— 75 (t)at> --- (2.2.2)
21 3!

Summing eqns.2.2.1 and 2.2.2 gives on rearrangement

ri(t+at) = 2ri(t) - ri(t-at) + rj(v)at’+ oath)  (2.2.3)

and ignoring terms of order ég‘ for At small and substituting

[ X d N
for r gives

ri(t+at) = 2r;(t) - ry(t-at) + l%i(t)At"’ (2.2.4)
i

This simple algorithm, often termed Verlet's algorithm, is
particularly useful as it requires the storage of only three

vectors rj(t), rj(t-at) and Fj(t) which is an important

consideration as available computer memory is invariably
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limited. The accuracy of the algorithm is third order in
positions but for the velocities subtracting eqn.2.2.2 from

eqn.2.2.1 and rearranging gives

£i(t) = (rj(t+at) - ry(t-at))/2at + o(at®)

This means that the velocities are only accurate to second
order but as they do not appear in the integration procedure
the trajectories remain accurate to third order. For
implementation in MD programs it is useful to define a half

step velocity g(bdn/Z)‘ where

vi(t-at/2) = [ ri(t) - rj(t-at)]/at (2.2.5)

sO as to avoid having to reset two vectors when a particle
crosses a periodic boundary and to allow a crude form of
temperature adjustment by scaling these half step velocities.
The integration steps, once the forces have been determined at

time t, can now be written as

’gi(t+At/2)

= vi(t-At/2) + Fi(t)at  (2.2.6)
ri(t+At) = rj(t) + v;(t+at/2)at (2.217)

(2.2.8;

L wi(t) = [vi(t-at/2) + vi(t+at/2)]/2

This slightly different form of algorithm, often referred to
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as the 'leapfrog' algorithm, is algebraically equivalent to
the Verlet algorithm but is computationally more desirable for
the points mentioned. Once again only three vectors have to

be stored, rj(t), yv;j(t-At/2) and F;(t).

The main job of the computer in MD is the calculation of
all the N(N-1)/2 possible pair separations from which the
forces can be calculated. These separations must also be
subject to the minimum image convention which is the problem
of finding out if, say, particle i interacts with particle j
in the primary cell or with one of its images in the
surrounding periodic images. This is illustrated in fig.2.1
for the case of two dimensions. To find the nearest image we

have to find which of the vectors ij, gij', Eii etc. has

the smallest modulus. This is equivalent to asking the
question if the primary cell was centred on particle i which

image of j would also be in this cell. It then follows that

IriJO‘I(L/z «=x,y where L is the length of the cell. The

procedure is then to obtain initially rjj the vector

separation of the primary positions from

Fij = Xi — Lj
and then the following transformations are applied
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Periodic images in 2-dimensions.

Figure 2.1




for all o=x,y,z. The scalar separation is simply Igijl after

these transformations have been performed. On the computer
there are various ways of making this transformation more
efficient than using 'IF' statements. One of these depends on
having a coordinate system with the origin at the centre of
the cell and then defining the length of the cubic cell to be
two units so that all coordinates lie between +1. A simple
double loop to evaluate all pair separations incorporating

periodic imaging can then be written in FORTRAN as :-

N1=N-1

DO 1944 I=1,N1
I1=I+1
XI=X(I)
YI=Y(I)
ZI=Z(I)

DO 184 J=I1,N
XD=XI-X(J)
YD=YI-Y(J)
ZD=7I-7Z(J)

XD=XD-2.8*INT(XD)
YD=YD-2.0*INT(YD)
ZD=ZD-2.0*INT(ZD)
R2=XD**2+YD**2+ZD**2

1@ CONTINUE

In this way the transformations are accomplished efficiently
in three lines using the INT function, which returns the
integer part of a real number, rather than in six lines using
'IF' statements. Many other schemes are possible and the most
efficient will certainly be machine dependent to a large
extent depending on the relative speeds of intrinsic

functions, 'IF' statements and integer/real arithmetic.

Once the separation has been obtained it then remains to
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find the force acting between the particles. For a
spherically symmetric potential such as the inverse power LJ
12-6 type, fig.2.2, the forces must be equal in magnitude and
opposite in direction and are simply derived from

differentiation w.r.t. r. So if

differentiating w.r.t. r gives the magnitude of the force, f,

to be
&(r) 12 . 8
= S8\r) _ =12 3 (-4
t=ar Q§§[ [r t2 [r] ]

r
and the vector force, Fjj, as

age [ (o] o]° Tr. : ¥

~ 1 . 52 ) 3
Fij = ~fBi5 = 2 [[;] =2 [; ];u . (2.2.9)

= —_— e o ? = 7__'(‘

Thus the LJ 12-6 potential, or any even powered LJ potential,
is computationally advantageous in that we do not have to use

the slow SQRT function to obtain r from r® as odd powers of r

do not appear in egn.2.2.9. The use of periodic boundaries
restricts the direct sphere of influence of a particle to the
largest sphere that can be inscribed in the MD cell thus
interactions are customarily truncated at distances greater
than a cutoff radius r

c where :Ef}{g'

To perform the dynamics all that is further required to
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Lennard-Jones 12-6 potential.

‘'Figure 2.2




specify are the initial conditions, i.e. a set of coordinates
and velocities. Generally these are taken from a previous
simulation but if none exist coordinates can be generated by
reference to some form of crystal lattice. A favourite among
molecular dynamicists has been the face-centred cubic lattice

which requires 4n® atoms to fill a cubic cell and thus

explains the widespread use of sample sizes of N=32(n=2),
N=108 (n=3), N=256 (n=4) etc. Although it is not particularly
important how the N particles are initially set out a face
centred cubic arrangement does have the advantage of allowing
very efficient packing so that high densities can be chosen

initially without the danger of severe overlap of particles.

The choice of particle velocities is usually determined
by the temperature required , the constraint of zero total
linear momentum and that if the initial configuration is
ordered then there exists some degree of randomness to aid
equilibration. For these reasons the procedure generally
adopted is to assign random velocities from a
Maxwell-Boltzmann distribution having a zero mean and a root
mean square velocity corresponding to the temperature
required. On many mainframe computer systems access is
possible to the NAG library which contains many routines one
of which, G@5DDF, is specifically designed for this purpose.
Of the various criteria given for the choice of velocities the
least important is the distribution as this will quickly

attain the Maxwell-Boltzmann form during equilibration. It is
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more important to ensure that total linear momentum is zero
and that either the configuration or the velocities are random
otherwise the system can remain trapped in a small region of

phase space.

With the initial conditions specified it is possible then
to solve the equations of motion in a stepwise fashion over a
set number of time steps to produce a complete history of the
evolution of the system through phase space. This provides a
record of the positions , velocities and forces of all the
particles for all the time investigated and from these it is
possible to evaluate the primary static and dynamic properties

of the system.

2.3 Evaluation of Equilibrium Properties

The primary equilibrium thermodynamic properties of the
system kinetic energy (KE), potential energy (?®), pressure (P)
and temperature (T) can be readily calculated for the

N-particles each step in the MD calculation from the following

formulae :-

N N
® = 2 2 ®(ryj) (2.3.1)
i=1 j>i .
1 2
KE = — ) mjvj (2.3.2)
2.
i=1
1 d 2 2KE
' * 3m-DX ,21 ¥ T 3Dk (2.3.3)
i= e




N
Pegy [ }mlvl.vl v + ey myie] (2.3.4)
i= i=l j>i :
e o e o
which as.  Fyj = - 5 ij) £ij means that
1 N N 40 (
= —— - abiry
Pegy [ Jmviwi- ) Y RCW ]
i=1 i=1l j>i
or
1 N
P = ET [} mvi.vi — ‘l‘] (2.3.5)
[ : i=1 o
where the virial, ¥, is given by
N N ié :
v=) )Ry oy (2.3.6)
i=1 55 o
In egn. 2.3.3 the factor N-1 occurs rather than N as strictly

speaking the constraint of constant total linear momentum

reduces the number of degrees of freedom by three, i.e. as

N
) mivs =
el

!
(=]

I
|
N1
B
iy
<
i

¥y =

thus knowing the momenta of N-1 particles and the sum of the
momenta of all N particles means we can always determine the
momenta of the Nth particle. This fact has generally been

ignored in MD simulations and its importance depends largely
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on the size of the system as the percentage difference between
temperatures calculated with a factor N rather than N-1 is
108/N. So for a N=1@8 system the error is ~1% which is less
than the inherent error in the mean temperature, <T>, due to
spontaneous fluctuations [66]. Therefore, the approximation

2
T=2KE/3Nx is a good one for systems where N is of order 18 or

greater.

As MD attempts to model a system of infinite size
corrections generally have to be made to the N-particle
potential energy and the virial, as given by egns.2.3.1 and
2.3.6, due to the truncation of the potential at the cutoff
radius r,. To obtain these long-range corrections it is
necessary to introduce the radial distribution function

(r.d.f) g(r).

In words g(r) is a function of r , the scalar separation
of two particles, which is equal to the mean number. of

particles in a thin spherical shell between r and r+Sr divided

by the number of particles in the same shell assuming a
completely random distribution of particles. The denominator
in this equation is simply found by multiplying the volume of

the thin shell by the number density

SEIGUN 35
Vi3 3

which on ignoring terms of sr® gives the denominator as

49



In MD calculations g(r) has to be calculated as a discrete
function by accumulating in a histogram, usually in the forces
double loop, the number of particles at a separation between r
and ftﬁi. The resolution required determines the size of ffﬁ
and as Wj?jﬁ} the discrete function will tend to the actual
g(r). As the averaging procedure is carried out over all N
atoms per configuration g(r) can be obtained to within a
precision of 1-»2% within a few thousand time steps depending
upon the length of the time step and the state point. 1In
fluid systems which interact through short range largely
repulsive potentials g(r) has the limiting values of g(r)—g
for r<o and g(r)—1 as r—00 indicating little penetration of
the hard core of atoms and a decay of correlations between
atoms as r increases. In practice the use of short range
potentials in MD, such as the LJ 12-6 form where the potential
energy at 2.50 is only ~1% of that at the minimum, ensures
that correlations in the positions of atoms decay within a few
o . This is important as otherwise much larger sample sizes
would have to be used to avoid correlations due to the

periodic boundaries.

Knowledge of g(r) allows us to calculate the mean
potential energy and virial for the N particle system from the

following integral expressions :-
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[}
@ = g I ®(r)g(r)4nraN dr
v
(o]
©0
@ =3 [ r do(r) g(r)ame2N ar
0

dr v

These integrals are simply the limiting cases, ®r+0 , of
summing up the average contribution to either the potential
energy or the virial from successive thin spherical shells of

thickness $r containing g(r)4ﬂr28rN/V particles per shell at

a distance r from the reference atom. The factor N accounts
for all N particles and the factor of 1/2 avoids counting the
contributions of the interaction twice. 1In practice the
energy and the virial in the rangeﬁl&f}rc are calculated
directly as this is simpler and because the time dependence of
these properties allows the calculation of the fluctuations in
the system. Beyond the cutoff the expressions are used to
calculate the long range corrections to the virial (VIRLRC)

and the potential energy (PELRC)

[ )
PELRC = g I ®(r)g(r)anr2N dr (2.3.7)
r v ) :
VIRLRC = & f r dO(r) g(r)4nr2N dr (2.3.8)
v .
e f

For the LJ 12-6 potential the expressions reduce to

e - 2572 [ (2] - 2]




_ 16neN2c®[ o 1°_ 2 [0 ]°®
VIRLRC = v [ {?c] 3 {rc]

where it has been assumed that g(r)=1 for r>ro. For rg=2.50

the assumption that g(r)=1 is usually well founded and if we
take for example the case where o=3.4@5ﬁ, f{§=119.8K and the
molar volume =28.48cm the actual molar values for PELRC and
VIRLRC are —445j and 2670'J respectively. Furthermore from
egqn.2.3.5 it follows that the long range correction to the
pressure is =940 Bar (lBar = ‘Egﬁy!i;). The use of these long
range corrections thus allows us to make good estimates of the

large N limit.

Molecular dynamics is then a particularly useful method
of investigating the equilibrium and structural properties of
model systems and has been used on many occasions for various
atomic systems, e.g.[37,48,102]. There are in theory any
number of equilibrium functions that can be calculated given
that the positions, forces and velocities are known at all
times. What makes MD unique, however, is its ability to

provide information on dynamical properties.
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2.4 Evaluation of Dynamical Properties

Although it is possible to obtain a complete record of
the dynamical evolution of a collection of particles by
molecular dynamics this in itself is not particularly
informative. We require some means to interpret the wealth of
data in some coherent consistent fashion. In MD great use has
been made of the method of time correlation functions [1063].
In general the time correlation function, C(t), of two
dynamical variables A(t) and B(t) is defined as

Cc(t) = <A(s)B(t+s)>
where the angle brackets denote an average over the ensemble
and time origins, s. If the system is isolated then the
correlation function is independent of the time origin in
which case s is set equal to zero

c(t) = <A(g)B(t)>.
It also follows from this [103] that C(t)=C(-t) and

g%«»= 0. . The short time limit of C(t) is obviously <AB>

wherégéwat long times the limit becomes <A><B> thus it is
always possible to define a function which decays to zero by
rewriting eqn.2.4.1 as

C(t) = <(A(Q)-<A>)(B(t)=-<B>)>.
If A and B are the same function C(t) is then known as the
auto-correlation function and although the actual dynamical

variables can be scalars, vectors, tensors etc. the

correlation function itself is always scalar.
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These functions can be used to provide a measurement of
the amount of correlation between two dynamical variables and
the way in which the correlation develops through time. For
an auto-correlation function perfect correlation must exist at
t=0 and can, therefore, only persist or decay as time
progresses whereas for correlation functions involving
separate variables it is possible for the correlation to be
greater at some time other than t=@. Obviously there are many
possible correlation functions which can be calculated but
some are of particular importance as they are related to
transport coefficients through the Green-Kubo expressions
[45]. One of the most readily calculable and useful
correlation functions of this type that can be obtained from
MD experiments is the velocity auto-correlation function
(VACF), c,(t),

Cy(t) = <y (0).y;(t)>. (2.4.3)

g - —

It is related to the diffusion coefficient by the well known

Green-Kubo equation

)

[}
1
p=1 ] Cy(t) dt , (2.4.4)
o -
This can be substantiated by reference to the corresponding

Einstein relation for the diffusion coefficient

D = limg,e <(rj(t) - rj(0))2>/6t

which on substituting for
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t
rj(t) - ri(0) = f vi(s) ds
(o]

and performing some algebra and integration returns the
aforementioned result. So from egns.2.4.5 and 2.4.4 the
diffusion coefficient is related to the mean squared
displacement of particles and the integral over the VACF.
Thus in a MD calculation there are two possible ways of
calculating D and as it is a single particle property results

of a high precision can be expected through averaging over all

N particles.

The existence of two expressions for the diffusion
coefficient is also true for other transport properties. 1In
the case of the shear viscosity N can either be related to a
mean squared centre of momentum displacement or to the
integral over the stress auto-correlation function (SACF),

?EEt):=<O¢Bg?S§$(t)> ., where 6&B:is an off-diagonal component

of the stress tensor,

n= 5 [ ce(®) at . @4.6

As already stated the stress is a collective property so the
amount of averaging is limited when compared to the VACF
consequently the determination of N from eqn.2.4.6 is subject

to large statistical errors [48,49,54].
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The actual numerical calculation of correlation functions
does not usually present any problems. The functions have to
be discretised, of course, and can consume an appreciable
amount of computer time when they are being calculated. Their
usefulness in the understanding of correlated dynamics has
been repeatedly underlined by many simulations particularly in
molecular systems where extra degrees of freedom permit

coupling between rotations and translations [104].

2.5 MD for Polyatomic Systems

As many aspects of MD are common for all systems the
general method has been explained for the simplest case of
monatomic particles so as to avoid introducing complications
at an early stage. For polyatomic systems the major problem
is dealing with the rotational part of the motion. For the
centre of mass there is no problem as once the total force on
the molecule has been evaluated the equation of motion is the
same as for monatomics. There are at present two general
approaches to modelling polyatomic molecules. Firstly, the
atoms within a molecule can be held together and given the
correct geometry by the use of bond and bond angle potentials.
These potentials have to have deep wells to keep bond lengths
and bond angles close to their required equilibrium values.
This in turn means that the forces from these potentials
change rapidly and thus require short time steps to be

integrated successfully [105,106].
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The assumption that the vibrations decouple from other
motions has been used in the second method of modelling
polyatomic molecules. 1In this case the atoms are fixed
together by rigid bonds and bond angles are also fixed at
specific values. Depending on the particular molecule
internal modes may or may not be present. If the molecule is
entirely rigid then the problem reduces to solving the rigid
body equations of motion. For the first approach to modelling
polyatomic molecules the procedure differs very little from
the monatomic case as the system is effectively a collection

of separate particles.

Studies on fluid systems composed of polyatomic molecules
modelled by the second approach began with the work of
Barojas, Levesque and Quentrec on diatomic nitrogen [38].

They used a two centre LJ model consisting of two LJ 12-6
interaction sites joined by a rigid bond of length 1 to
represent nitrogen. They used Euler angles [187] to specify
the orientations of molecules and numerically integrated
Euler's equations of rigid body motion. This was fairly
successful but suffered from the drawback that two of the
Euler angles become indistinguishable if the azimuthal angle
tends to @°or 180¢°. This meant that the angle for a particular
molecule had to be redefined from a different origin if its
azimuthal angle became too close to @°or 180°, otherwise the
solution of the equation of motion became unstable and the

total energy drifted. 1In their simulations of nitrogen Cheung
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and Powles [108] used the special geometry of the homonuclear
diatomic to reduce the normal second order differential
equation for rotational motion to a first order one. To
integrate the equations of motion they used a fourth order
predictor-corrector method [189] to solve for angular velocity

and a fifth order predictor-corrector for the centre of mass

motion.

To avoid the problems associated with Euler angles and to
generalise to any rigid polyatomic system Evans [110,4@] has
developed an algorithm which uses quaternion parameters.

These four variables, defined in terms of the usual Euler
angles, map the orientation of a rigid body onto a point on
the surface of a four dimensional sphere. As this space is
Euclidean the equations of motion in terms of the quaternions
are free of singularities and results in two sets of coupled
first order differential equations which can be solved

numerically.

In the work of Singer et al [39,111] on linear molecules
yet another algorithm was used for the rotational motion.
This involved the use of a 'free flight' phase which allowed
the constituent atoms to first move as if unrestricted and
then this movement was converted into an equivalent path due
to the restriction of the constant bond length. This form of
algorithm which allows a 'free flight' phase has been treated

formally and generalised to treating any complex molecule by
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Ryckaert, Ciccotti and Berendsen [41]. This method involves
the solution of the equations of motion subject to a number of
predefined Lagrangian constraints which have to be satisfied
at each step by solving for undetermined multipliers. Fincham
[112] has shown that for any linear rigid molecule, where
there is only the one constraint of constant bond length, the
method of constraints is particularly suited as the equation
for the undetermined multiplier reduces to a simple quadratic.
For more complicated molecules the undetermined multipliers

have to be found either by matrix inversion or by iteration

[41].

The choice of algorithm to use depends to some extent
upon the molecule to be modelled. Obviously the constraints
method could be used for all molecules of ths type but for
rigid molecules the method of quaternions [110] is
particularly elegant and more efficient than constraints
because it does not require any iterative procedures or matrix
inversions [41]. As previously stated one exception to this
is the diatomic case. The advantage of freezing out entirely
the vibrational degrees of freedom is that larger time steps
can be used so for an equivalent amount of computer time we
can sample more of phase space. This is one of the most
important considerations in MD. 1In order to obtain meaningful
results for time averaged quantities the actual duration of
the experiment must be chosen to be longer than the relaxation

times of all relevant processes in the system. This becomes
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particularly important as the molecules become more complex,
which causes the spectrum of relaxation times to broaden. As
the aim of this work is to investigate the rheological
behaviour of several different molecules, rigid and
constrained models of molecules have been used throughout to
allow systems to be studied under a wider range of applied
conditions. The algorithms used, constraints and quaternions,
require further detailed explanation as they constitute a
fundamental part in the efficient simulation of polyatomic
molecular fluids. One way to approach this is to treat
increasingly more complicated molecules starting from the two
centre molecule then progressing to the general n-centred
rigid molecule and ultimately to molecules subject to a known
number of constraints but capable of intramolecular

rearrangement.

2.6 Diatomic Molecules

Here we consider the case of a two centre molecule where
the positions of the atoms of molecule i and the centre of

mass (COM) are specified by the vectors rj,, gizwand Ry

respectively. If the masses of atoms 1 and 2 are'mi1 and ‘my,

then E{'can be calculated from

Ry = (rjymj, + rjomio)/Mj (2.6.1)

where'Miﬂﬁgjﬂigl is the mass of molecule i. The equations of
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motion [41] for the atoms and the COM can be written as

Fik = (Fik *+ Gix)/Mik ' (2.6.2)

2 :
R = ) Fie/My (2.6.3)

where Fii is the force on atom k of molecule i due to all the
other molecules and Gji; is the force along the bond joining

the two atoms. From Newton's first law it follows that

By = ~S5a - (2.6.4)

The equation of motion for the COM is of the same form as for
a monatomic particle and as such can be integrated without
difficulty using the 'leapfrog' algorithm. If we apply the
'leapfrog' algorithm to the equations of motion for the atoms

we obtain [112]

ris (b+At) = 1, () + By, (t-At/2)At + Fy,at7 + g;,at2  (2.6.5)
Wi, Wi,

Eiz(t"‘At)

ria(t) + Bja(t-At/2)at + Fiat® - 65,8t°  (2.6.6)
m; 2 P

Subtracting eqn.2.6.6 from 2.6.5 and introducing the bond
vector

L = ria -

i

gives

13 (t+at) = Li(t) + 1j(t-at/2)e [gi, 1 Eiz]At2+ gn[l + i ]Atz,' (2.6.8)
Wiy Wi, mj, mj :
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Now as Gjy must act along the bond vector the final term in

egqn.2.6.8 can be written as

_Qn[% 1 ]At‘ = hl4 (t) (2.6.9)
' i1 Wi

where h is an undetermined multiplier. If we also allow

I = 15(8) + 1j(t-at/2m+ [Ei1 > Eiz]Atz
Wiy W,

~

i.e. 1; is the bond vector after 'free flight' of the atoms

then

1;(t+at) = 1; + hl;(t) . (2.6.10)

To determine h the constraint that the bond length is a fixed
length, 1, is used. This means that
13(t+at) - 1% 0

(I3 + B13(e0% - 1%= 0

& Pt +H-1%0 0 2ean

Egqn.2.6.11 is quadratic in h and the solution is found simply

from

h = - 131300 + AL(0)-Ip- 133 - 1)

and then 1;(t+At) can be calculated from egn.2.6.18. Having

obtained 1i(t+At) the half step bond vector velocity can be

found from

ij(t+at/2) = (1j(t+At) - 15(t))/at
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and the on step velocity from

ij(t) = (Qj(t-at/2) + ij(t+at/2))/2 .

The new atomic positions are then calculated from the updated

COM position and the new bond vector

m‘
ris (t+At) = R;(t+At) + [;;;;f:-z-]h(tﬂ;tx
m4 |
riz(t+at) = R;(t+at) - [;;T;;—z]li(tﬂt)

Thus in this way the equations of motion of a diatomic can be
integrated by a relatively simple algorithm which requires the

storage of eight vectors per molecule R(t), R(t-at/2) , ry(t) 4

ra(t) , 1(t) , 1(t-At/2) , F,(t) - and Fa(t) or just one more

vector per atom than for a monatomic simulation.

The introduction of the rotational degrees of freedom
means that the kinetic energy can be separated into two
components. The translational kinetic energy (TRKE) can be

readily calculated from

but the usual expression for the rotational kinetic energy

(RTKE) is
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where I is the moment of inertia and w is the angular
velocity. As this algorithm does not use angular velocities
an alternative approach is to use the fact that the total
kinetic energy (TKE) is equal to the sum of the rotational and

translational kinetic energies

N
3 % } mj Fiy + mizigz = TRKE + RTKE
L e
].N 2 2 2 ;
i Roe = g Ymptd ematle - b e

Now differentiating egn.2.6.1 w.r.t. time gives

Ri = (mjqfjy + mjoli2)/M;

then substituting for éi in eqn.2.6.12 and simplifying gives

1 MjMj2 .2 o .2
RTKE = 3 YT [Eix — 2Fj,F50 + Eiz]

Differentiation of eqn.2.6.7 w.r.t. time means that

- 1j = bjy ~ Ei2

and squaring gives

i;

L]
I3
[N

° . o 2
1 — 2bjbja *t Fi2
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so from eqn.2.6.12

where u; = mjymjp,/Mj is the reduced mass of molecule i. For a

classical diatomic molecule there are five degrees of freedom
three translations and two rotations. By equipartition of

energy it is possible to define three temperatures for this

system :-

Translational temperature, TTEMP = 2TRKE/3(N-1)k

Rotational temperature . RTEMP = RTKE/Nk

Overall temperature ' TEMP = 2TKE/(5N-3)k

In the equation for the rotational temperature the factor N
rather than N-1 occurs because the intrinsic angular momentum
is not a conserved property. Therefore, there is not the
reduction in the number of degrees of freedom that occurs in
the case of linear momentum. It is, however, important to
ensure that on average the sum of the angular momenta is zero
otherwise the temperature calculation has to take into account

the net spin of the molecules.
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2.7 Rigid Molecules

In this case a rigid body consisting of n mass points at

N

Jj=1

N
2 ™
i=1

For a rigid molecule the positions of the atoms relative to

the positions ry > Y2 5 «+++-+« 'y is considered. The COM is

again given by

I
H
—~
N
~3
-
S

the COM can be defined by fixed vectors which have the unit
principal axis vectors as their basis. So for a particular
atom its position is always defined by a vector

Xpj = (xp‘j,ypj,zp‘j)f where Xpjs» Ypj and Zpj are constants and

L . i ’A A ; - . 3 . 3
the basis vectors X, Y and Z are the unit principal axis
vectors which form an orthogonal set and are defined w.r.t.
A A A
the fixed laboratory coordinate system. In time X, Y and 2

will change as the molecule rotates but rpj remains the same.

The transformation from a principal to igboratory frame of

reference is simply

Lj-Ben; Sxp; Xrypy X+ oL (2‘-7:35

or — . S - _ 7nﬁ~,;"‘! ¥
ry. = A'rp. (2.7.3)

—_Jii: —pJ ., . n/‘

where éT is the transpose of the rotation matrix A and is

constructed from the principal axis vectors [110]

A= X120 (2.7.4)
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As AT is formed from an orthogonal basis it follows that [113]

— W 5l

so therefore, multiplying each side of eqn.2.7.3 by A gives

Ar), = Ip; . (2.7.5)

The choice of principal axes is governed by the condition

that the moment of inertia tensor I is diagonal i.e. the T

terms are the only non-zero ones. 1 is given by the equation

[197]

s } mj(rp;l - rp.rp.) (2.7.6)
_1 ‘

where 1 is the identity matrix.

In practice some or all of
the principal axes can be found from the symmetry of the
molecule but if necessary standard methods [113] can be used
to find thg principal axes which diagonalise I.

Once the principal axes have been obtained the
orientation of the molecule can be specified with respect to

laboratory reference frame in terms of the three Euler angles

(v,0,0).
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The angles ¢, © and ¢ are defined as the angles of rotation
about the axes shown in operations 1, 2 and 3 respectively of
fig.2.3. Using these Euler angles the orientation can also be

represented by the four quaternions [110] :-

qq = cos(e/2)cos( (y+d)/2)
qz = sin(e/2)cos((¥-0)/2)
as = sin(e/2)sin((¥-9)/2)
q4 = cos(6/2)sin((P+0)/2)

These four variables are not linearly independent as it can be

easily shown that they satisfy the constraint relationship

gi=1 . (2.%.%)

The Euler angles can be also be used to calculate the

principal axis vectors from

g = ( cos®cos¥ — sindsinycos® , cosdsiny + sindcos¥Ycos® , sinésind)
i = ( —sin®cos¥y - cosPpsimPcos® , cosdcosycose® — sin¢sinw , cos$sine)
Z = ( sinysine , — sinécosy , cose)
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and thus the rotation matrix A from egn.2.7.4.

The principal

axes can just as easily be written in terms of the quaternions

and the rotation matrix then becomes [110]

[

2(qq04 — 939;) > —2(a394 + 92494)

2 2 2 2
~— Qg *+ A — Q4 + Q3 , 2(qe9; — 9392) , 2(q,q4 + 93q,)

: 2 2 2 B =
-2(qaq, + Q493) , 93 — 92 — 9q *+ q; 5 2(Q29; — 93q4)

2 2 2 2
— 43 — 4z t q4 + q4 o

R e AR

The basic equations used in the rotational motion of rigid

bodies involving quaternions are [110,114]

=1
Jp = AJ
wPa 3 JP/Imm
4, 4 "9 902
L P 1| 9 "9 93
=
dq ds 42 9
| é1 4, 9q3 94
or E X M Ty
9=

69

ds

a2z

d4

qg

(2.7.9)
(2.7.10)
(2.7.11)

“py

“py

“p,

0

(2.7.12)



where J is the angular momentum and T is the torque. The

angular momentum can be calculated in the principal frame of

reference from

¢ )

p = 3

Ip = 2 Ipy®i¥p; (2.7.13),

which as [ — i

p; = “p;Ep; (2.7.14),

gives T - e

n
Jp = 2 rp > (Wp XIp ;) (2.7.1§9:
J=1 IR . e

and can be transformed into the laboratory reference frame

using the rotation matrix

J =

>
-3

Jp'- (2.7.16)
Once the forces on all the atoms of a molecule have been
computed in cartesian space the total torque can be calculated
from

T=)npd; - (2.7.17)
Having established which quantities are required for
handling rigid body rotations and how they can be calculated
all that remains is to integrate the equations of motion.
This immediately poses a problem as the form of the equations
of motion, coupled first order differential equations, does
not permit the straightforward implementation of a Verlet or

'leapfrog' type algorithm. It is possible to use higher order
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predictor-corrector algorithms [169] but Fincham [114] has
pointed out that the numerical errors introduced by these
higher order algorithms become significantly larger than those
obtained using the simple 'leapfrog' scheme as the time step
is increased [69,114]. To obviate the problem of having to
use high order algorithms Fincham [114] has developed a scheme
capable of integrating eqns.2.7.9 and 2.7.12 using a

'leapfrog' type formulation.

2.8 Algorithm for Rotational Motion using Quaternions [114]

Using Taylor expansions forwards and backwards in time an

amount At/2 about t for J gives

J(t-At/2) = J(t) - J(t)At/2 + J(t)(at/2)72! - ... (2.8.1)

J(e+a/2) = I(t) + F(E)at/2 + J(t)(at/2)/2t + ... (2.8.2)

Subtracting eqgqn.2.8.1 from 2.8.2 gives

J(t+At/2) = J(t-at/2) + J(t)at + o(at®) (2.8.3)

which from eqn.2.7.9 gives

J(t+at/2) = J(t-8t/2) + T(t)at + o(at®) (2,8.4)

For the equation of motion involving quaternions applying the
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same form of algorithm at time t rather than t-At/2 gives

q(t+at) = q(t) + g(t+at/2)at + 0(At?) {7 (2.8.5)

but

3(t+at/2) = Q(t+at/2)wp(t+at/2)

so as Q(t+At/2) involves g(t+At/2) the algorithm cannot be

implemented directly. In order to approximate a value for
q(t+At/2) Fincham [114] uses a truncated Taylor expansion

q(t+At/2) = q(t) + §(t)At/2 + o(at®) (2.8.6)

1]

= q(t+at/2) = q(t) + Q(t)wp(t)at/2 (2.8.7)

The overall sequence of steps in the rotational algorithm then

takes the form [114]

1) Begin calculation with J(t-4t/2), gq(t) and T(t).
2) Calculate on step angular momentum from eqn.2.8.4

J(t) = J(t-At/2) + T(t)At/2 ,

3) Transform lab. angular momentum to principal angular

momentum using the rotation matrix formed from g(t)

Ip(t) = ACEYI(E),

4) Use egn.2.7.11 to calculate on-step angular velocities

“pa(t) = qu(t)/lmu X=X, ¥,2
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5) Approximate q(t+At/2)  using egn.2.8.7

q(t+At/2) = q(t) + Q(t)wp(t)At/Z -

6) Use g(t+At/2) to calculate A(t+A¢/2) and Q(t+At/2)
7) Calculate new half step angular momentum

J(t+at/2) = J(t-At/2) + T(t)At

8) Transform to principal COOZEIESEe frame

Jp(t+at/2) = é(t+At/2)g(t+At/2).

9) Calculate half sfep angular velocities

Wpe(t+at/2) = J (t+At/2)/I . *=X,¥,2

19) Obtain new quaternions from eqn.2.8.5

gq(t+Aat) = q(t) + Q(t+At/2) p(t+At/2)at
11) Using the constraint relation, eqn.2.7.7, normalize the
quaternions

q’ (t+At) = aq(t+At)

where

N[=

" i [ o ]
‘ q® (t+at)

The purpose of step 11) is to prevent any numerical
errors accumulating which might lead to inaccuracies in the
trajectory. Once the quaternions have been obtained it is a
simple matter to generate the new atom positions from the

updated COM and the position vectors {rp;}

£j(trat) = R(t+At) + AT(t+At)£pj

As can be seen the algorithm requires minimal store since
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only the three vectors J(t-at/2), g(t) and T(t) need to be
retained at each step. The algorithm as a whole is only
second order accurate but tests on a three centre model for
cyclopropane [114] have shown it to be more stable than either

a fourth order predictor-corrector or a constraints algorithm.

In contrast to the diatomic algorithm angular velocities
are required so the total rotational kinetic energy can be

calculated directly from

_ 1 2 2 2
SRS, = ‘212 C LtPxj + Tyy“pyj * L55Yz5 )
J:

2.9 The Method of Constraints

In this case we consider the dynamics of a molecule

consisting of n mass points at the positions:; ry , Fz , +eeeee. Ip

in cartesian space and of mass my , Mp , «cveee. My . We

further assume that the molecule is subject to mng rigid length

constraints of the form |Irjjl =djj . Thus a bond length is

preserved by constraining the distance between nearest
neighbours and a bond angle by constraining the distances
between three nearest neighbours. At each step the total
force on each atom, Fj, due to all intra- and intermolecular
potentials can be calculated from the positions leaving the
unknown G; , the force due to the constraints imposed.

As for the diatomic the equation of motion is
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ry= (E; + Gjy/mj : (2.9.1)

Implementing the 'leapfrog' algorithm to this equation we

obtain

4 : 2
ri(t+at) = rj(t) + rj(t-at/2) + (F; + Gj)At /my (2.9.2)
which can be written as
rj(t+at) = ri + Srj (2.9.3)
where gi is the position after 'free flight' and
2 o
sr; = Gijot/my . (2.93«4;)(

As the forces constituting G; can only act along the direction

of the constrained lengths it is possible to rewrite 8r; as

8rj = } h; jrij(t)
J

where the sum over j extends to those atoms that form a
constrained pair with i. The probiem then is to determine
once again the set of multipliers {hij}w The methods by which
this can be achieved have been dis;;;;;d previously [41]. The

particular version used throughout this work does not

explicitly calculate the {hij} but achieves the same result by
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an iterative procedure [41].

2.10 The Constraints Algorithm

After 'free flight' it is possible to write down for any

pair of constrained atoms an equation of the form
2

[(:i + girij(t)) - (rj + gJZii(t))] = di;

or SR O e

(rij + gijri5(0))%= di; (2.10.1)

where  gjj = € — 8 - is the multiplier which ignoring all the

other constraints produces new positions

]
% ]

(rj + girij(t)) ' (2.10.2)
and

"

L)

L]

(rj + gjrijét))

(2.10.3)

which satisfy the constraint relation between atoms i and j.

Equation 2.1@.1 is quadratic in g&j‘and can be solved exactly

to give
2
gij = - rij(0)rly + Ay rip- ry0 @l - adp  (2.10.0)
2

It follows from the fact that the forces of constraint on

particles i and j must be equal and opposite that

gi = gjj(mj/(mj + mj))

(2.10.5),
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(2.10.6)

g5 =~ 8ij(mj/(mj + mj))

So it is then possible to determine g; and 53 from

eqns.2.10.2 and 2.18.3. The next step then is to redefine

gi=£'{ - and E3=£3 and then to pass to the next pair of

constrained atoms and repeat the procedure. Of course the

satisfaction of the constraint between the next pair will
destroy that of the previous two so the process has to be
repeated. The procedure is terminated when all the

constraints are satisfied to a specified tolerance, TOL, i.e.

when

Iesjl - djjl/djj < TOL . ' (2.10.7)

The total number of iterations required per molecule is
largely determined by the tolerance. In molecules where many
constraints have to be satisfied the evaluation of a large
number of square roots, eqn.2.10.4, can cause the time spent
in the iterative procedure to become a significant contributor
to the overall duration of the MD simulation. It is then
important to maximise the efficiency of this procedure and one

way to do this [115] is by using the following approximation.

The quadratic equation for the multiplier, egn.2.10.1,

can be written as

2 .2 2 2
&i5Ei50t)- + 2455055y 5(t) + rij - dfj =0
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Ignoring the quadratic term gives an approximation to gij

gij = (dfj - £i§>/2(£ij'zij(t)) ‘ (2.10.8)

It turns out that although this method requires more
iterations it is in fact faster in terms of computing time.
The satisfaction of the constraint relationship step can also
be accomplished efficiently with this procedure by rewriting

the tolerance condition, eqn.2.18.7. Since we require

“!le - dijl< TOL*d; ;

it follows that

[leijl + djj| < TOLxd;; + 244

so multiplying these two conditions together gives

12 2 2.2 2
'rij = dij|< TOL dij + ZXTOL*diJ“

3 — " S— T
For small TOL the term involving TOL is negligible so the
condition can be written as

'533 - d§J|< Z*TOL*dij;,

which as can be seen requires nothing extra to be calculated.

Having satisfied all the constraints to within the
specified tolerance all that remains is to update the atomic
positions

and the half step velocities

B3 (t4at/2) = (rj(t+at) -~ rj(t))/at .

The full stepgggiocitieérare then calculated in the usual way
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from

ri(t) = (Bi(t-0t/2) + ij(t+at/2))/2

The COM velocity can be simply calculated from differentiating

the equation for the COM position

n
D mirs
i=1
E =
n
) m
w.r.t. time e e
n
R o= YmbgM

i=1

For a system of such molecules the total translational

kinetic energy is then simply

R2

1
TRKE = ) 5 M;jRj

11 INA12

but as angular velocities and principal moments of inertia

not used the rotational kinetic energy is calculated from

N nil
RTKE = TKE — TRKE = [ ) [ )3 mijgij]] ~ TRKE -
i=1 =1

The corresponding temperatures can be calculated from the

are

number of degrees of freedom, Ngo which for molecule i of this

kind is given by

Ng.

g = 8nj - e,

, Dy and nCi‘being the number of atoms and the number of

constraints, respectively, in molecule i. In three dimensions
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the number of translational degrees of freedom per molecule is

always three so the remainder will be rotations.

2.11 Polyatomics : General Considerations

So far an outline has been given of how the equations of
motion for polyatomic systems can be numerically integrated
given the forces acting on the molecule and the constraints
imposed upon it. The calculation of the kinetic energy has
also been dealt with for each of the specific cases. Most of
the other properties are calculated in the same manner as for

monatomics but there are some points to bear in mind.

For the total intermolecular energy the equation for an N

particle system of nj atoms per molecule is

N N nj nj 7 | ' ;
=) Y #CIry, 5,1 , (2.11.1)
is1 i k=1 1=1

The contribution to which within the cutoff radius, rg, can be
calculated directly. The equation for the long range

correction then becomes

PN

- j ®(r) 4mr dr (2.11.2)

e

=1
PELRC = 5

<

where ng is the total number of‘étdﬁémihw£hewéystem

N
na=’§ nj
o dm
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For this equation to be correct it is necessary. for the
cutoff radius to be greater than the largest possible distance
between two atoms of the same molecule otherwise some fraction

of the volume from - r=r - will be occupied by sites which do

not contribute to the intermolecular energy. For consistency

it is also necessary to ensure that half the box length is

also greater than the largest possible distance between atoms
of the same molecule as otherwise a molecule could interact

with the image of itself.

For the pressure tensor the usual equation is

o

LT . N N :
p=i [ } M;RR; + } } R; iF5 ] _ (2.11.3)
i=1 i=1 j>i :

For polyatomic systems where the intermolecular forces are
non-central i.e. do not act along the COM separation vector,
and the COM does not correspond to any of the interaction

sites the evaluation of the potential contribution,

p® -

<=

N N -
> ) Bijij o (EEGE
i=1 j>i :

can present a slight problem. It is always possible to

$

evaluate P" as it stands but this means evaluating at least

one extra vector in the forces double loop at some point and
storing all the forces on molecule i due to molecule j. It

also means that the molecules must be looped over
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systematically where it might be more efficient to loop over
certain atoms. This problem can be avoided through recourse

to the following rearrangement [116].

Firstly, if we define a tensor g:a_as

N

528 . % } 2 } } Tiydifigda (2.11.5)
i=1l j>i k=1 1=1

where

and flle is the force on atom k of molecule i due to atom 1

of molecule j. Now writing the vector joining the COM of
molecule i to atom k of molecule i as
Tige = Fip ~ RBi

e rlk = Licpy * By

and then substituting for both p;;, and rj, in egn.2.11.5 gives
1k J1 9

N N nij nj
B3 /i e pua)h

i=1 j>i k=1 1=1

&"U
o
{

[(Eick *Ri) - (Ljey + By )] ikl

nj nj

N N

= 1 s & - * k3 o s 3 3

lis } } 2 [ElJflkgl + igfipi *+ EJclfJ11k]
i=l j>i k=1 1=1

since gndl =-'£ﬂik‘ It then follows from the fact that

N N p3y njy N N nj nj

)« 9 } Begtigal - } ) B } ) Ty

i=l j>i k=1 1=1 i=1l j>i 773 1=1
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N N

= } 2815!‘15

i=l j>i
and
N N
> ) } Erlckflle+rJ°1fJ11k } 2 Ficpfiy
i=l j>i k=1 1=1 4 i=1 k=1
that
I::’:’a : %2 Erlck-
i=1 k=1
or
E’ = Foa - %2 ) iads (2.11.6)
i=1 k=1

Thus the pressure tensor can be evaluated efficiently by
summing up the atom-atom contributions in the usual way in the
forces double loop and then all that is reduired is a simple
loop over all molecules to calculate the additional term. For
the normal pressure components there is, as before, a long
range correction to be made which has to be adjusted in the

same way as the potential energy long range correction for

polyatomics.
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2.12 Homogeneous Shear NEMD

The methods described so far give a basic outline of the
procedures used to perform equilibrium molecular dynamics of
monatomic and polyatomic fluids. As already discussed it is
possible to obtain information of a rheological nature from
either equilibrium MD (EMD) or non-equilibrium MD (NEMD). The
limitations of and the difficulties encountered in determining
the stress correlation function from EMD [48,49,50] suggested
that the more fruitful approach to the problem ofjf}ggiﬂgzigg
the shear flow behaviour of molecules would probably be NEMD.
Of the available NEMD methods for measuring rheological
properties those described by Evans [55] and Singer et al [67]
appeared to be worthy of particular attention. As already
discussed both methods employ the Lees-Edwards (LE) [54]
boundary conditions to simulate shear flow but whereas Evans'
method [55] employs a large velocity gradient to produce a
steady state stress response Singer et al [67] use a
perturbation technique [68] to obtain the integral of the
stress relaxation function. The actual algorithms employed
here differ slightly from those given in the appropriate
references [55,67] so it isr necessary to describe the

algorithms used in detail.
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Lees-Edwards boundary conditions.

Figure 2.4




2.13 Lees-Edwards Boundary Conditions

For both the direct and perturbation methods LE boundary
conditions were used throughout. These have already been
described in general terms in chap.l and the situation is
illustrated in fig.2.4.

Initially the simulation begins as an equilibrium
simulation with normal periodic boundaries. To be consistent
with the imposition of a constant shear rate, ¥, the position
of the periodic boundaries at some later time,wtl, must be
displaced a distance ¥Lt, , where L is the length of the cell.
In a numerical simula;ién t, can be written as n At where At
is the time step. In a homogeneous shear NEMD simulation
these moving periodic boundaries have to be used both in the
forces double loop for calculating the nearest image and for
determining where the image of a particle leaving the box
enters. The transformations that were required to achieve the
first of these in an equilibrium simulation have already been
given. For the non-equilibrium case where the shear is
applied in the XZ-plane they change to :-

if rzij <-L/2 , ry ij= rxij + YLnyAt
if Tei; > L/2, Tyjj = Txjj ~ ¥Ln, At
if rxij < -L , rxij = rXij + L
if Txjj > L, rg;= Txjj = L



|
|
for a=x,y,z¢ As before these transformatlons can be carried

. P SR N A S . ISR

out eff1c1ently in FORTRAN using the INT functlon.; To
determine the position of incoming particles a similar

procedure is adopted :-

if ry, < -L/2, Ty = ry; + Yln,At

if To; < -L/2 , Ty = ro + L
if I‘«i > L/z s I‘«i = r«i 2 L o

for ' «=x,y,2 .

These then are the essential features of LE boundary
conditions which are common to all simulations which have used
them [1,2,56]. Where simulations differ is in the actual
details of how the fluid is sheared. In Lees and Edwards'
original paper [54] the actual impésition of the boundary
conditions alone was used to drive the system to steady state.
Naitoh and Ono [56] and Heyes [1,2] changed the position of
the COM of a particle an amount jﬁéﬁt in the X-direction at
each step whereas Evans [55] altered the velocities of
particles so that a least squares fit to the velocity gradient

returned the correct shear rate.
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2.14 Shear Algorithm for the Perturbation Method

In each of the methods used here the basic procedure of
shearing the fluid has followed a similar format. If we take
the simplest example of a monatomic fluid where the positions
{r(t)} and half step velocities {v(t-4t/2)} are known
initially and let GLT = iltA and GLTC = @ then the procedure

for the perturbation technique was as follows :-

1) Evaluate the total force on each molecule, fij(t), in the
usual way w.r.t. the LE boundary conditions. -
2) Move the periodic boundaries
GLTC = GLTC + GLT
and if GLTC > L/2, GLTC = GLTC - L
3) Integrate the equations of motion.
4) Add shear displacements in the X-direction using

ry(t+at) = ry(t+at) + $r At

5) Apply LE boundary conditions for particles leaving primary
cell.

6) Return to 1)

Those thermodynamic functions which are normally
calculated in equilibrium simulations, temperature, pressure,
energy etc., can be evaluated in the usual way using this
scheme. 1In applying the perturbation technique the approach
employed was to obtain the stress ténsor, g = —g, as a

function of time at one shear rate , ¥,, using the algorithm
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as described, and then, starting from the same initial
configuration, obtaining g(t) at a slightly different shear
rate qutgg;. In generaliji was set equal to zero and
Ayfﬂozsi?which is a very low shear rate for these simple
fluids. The symmetrized XZ component of the stress difference

between two runs, A&o(t) , has been shown in theory [68] to be

proportional to the integral over the stress auto-correlation

function and hence the viscosity through the equation
n= 2™
The extension of this method to polyatomic systems is
straightforward as all that is required is to substitute for
the coordinates of the COM of the molecule at step 4). This
in effect means that the shear displacement of all the atoms

of a molecule is that of their COM.

2.15 Shear Algorithm for the Direct Method

In the direct method the idea is to produce a measurable
steady state stress response which differs significantly from
the inherent stress fluctuations. To do this it is neccessary
to use large velocity gradients which have the unfortunate
effect of causing the temperature of the system to rise. It
has been shown that it is possible [1,2,56] to apply a large
gradient using the algorithm as described for the perturbation
method but this algorithm ignores the fact that there are

spontaneous fluctuations of the measured shear rate of a
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system even at equilibrium. In a steady state NEMD experiment
using this method the hope is that these random fluctuations
will average to zero leaving just the applied shear rate as
being responsible for the measured mean stress. For the
perturbation technique this is less of a problem as the random
fluctuations will be well correlated between the two runs and
thus cancel out so that the measured response is due togf?

only.

An alternative method due to Evans [55] maintains a
strict control of the measured shear rate . The steps
involved are, taking again the simplest case of a monatomic
fluid, :-

1), 2) and 3) as before
4) Apply the LE boundary conditions to particles leaving the
primary cell with the additional conditions that:-

if rp; > L/2, v;i = vy; ~ YL

if ry, < -L/2, V;igi;fxi + JL

5) Reset the velocities by using the followiﬁé procedure :-

i) Calculate a least squares fit to the velocity gradient, 3’

, from

VxiTzi

N
27
zj

ii) Calculate the mean linear momentum in the X-direction, 5@"

nINA1Z
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N
1
- Px TN } MiVxy
ey

iii) Reset the velocities of the particles such that repeating

i) and ii) would return ¥ = $ and Py = 0 by

= Vy; ~ Px/my + (3 - 3 )rgy

6) Calculate the temperature of the system, Tgq] -

7) Rescale the temperature to the required value, Treq by

altering the velocities in the following manner

Vg = (Vx; = ¥rp )b + ry,

]
Vo = vqiib sy  OFY,Z

where b = (Treq/Tcal)g‘ :

8) Return to 1)

It is apparent from steps 4) and 7) that the shear
velocity of a particle is assumed to be consistent with its
position. Thus in step 4) if a particle has an x-direction

velocity of vxf then it is assumed that its x-direction

thermal velocity, vzg‘, is defined by
th _

Now if this particle crosses the +z face then

: v;i = vi? + ¥(rgy ~ L) = vy YL

In steps 6) andg7jygaﬂjfjigll is also required to find vigf

so that the temperature can be calculated and rescaled. It

should also be noted that v;? must also be used in the

calculation of the stress/pressure tensor.
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The extension of this method to polyatomic systems is
reasonably straightforward. For integration algorithms which
define the positions and velocities of the atoms relative to
the COM, e.g. quaternions, there is in general no problem and
the positions and velocities used throughout the scheme become
those of the COM. If a molecule does happen to straddle a Z
face such that some atoms have +ve Z coordinates and others
have -ve Z coordinates then there are no inconsistencies since
one set of atoms will have their velocities specified relative
to the actual COM while the others will be relative to an
image COM outside the primary cell. Where difficulties do
arise is when the actual positions and velocities of the atoms
define the motion of the COM. For example in the constraints
algorithm for flexible molecules the motion of the COM is
determined by that of the constituent atoms rather than by its
own equation of motion. Although the paths obtained from
either approach should be equivalent numerical errors arising
from the constraints being satisfied to a certain tolerance
can allow them to diverge slightly. As step 5) attempts to
zero the momentum of the system the question arises as to
whether to zero the momentum as defined by the COM or as
defined by the velocities of the atoms. It is possible for
the sum of COM momenta to be different from the sum of the
atomic momenta because if a molecule straddles a Z face then
the shear velocity of some of the atoms will not be the same
as the rest if the molecule is forced to be 'dissociated' by

the periodic boundaries. To maintain consistency throughout
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these calculations step 5) has been applied to the COM at all
cases where at all times the COM remains within the primary

cell. For the constraints method the simplest way to do this
is to retain two sets of atomic coordinates. The primary set

are for the 'undissociated' molecule and at all times the COM

is given by

nj
Rj = } mjjrij My -
=1 o

where Rj must lie within the MD cell. The second set {r'}

result from applying the LE periodic boundary conditions to
the first set {r} thus {r'} must always be confined to be
within the boundaries of the primary cell whereas some of the

{r} may not. If a molecule lies across a boundary then

nj
9
Ri » }Mﬁumi .
Jj=1

When the COM crosses a boundary then the coordinates , and the
velocities if it is a Z-face , of all the atoms of the
molecule and the COM are reset in the way described. The
second set of coordinates is required in the forces double

loop where it is essential that all the coordinates lie within

the MD cell for the LE periodic boundary conditions to work as

described.
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CHAPTER 3

DIATOMIC RESULTS

3.1 Introduction

The objective of this work was to use the technique of
molecular dynamics to obtain information concerning the effect
of molecular characteristics upon the rheological properties
of model liquids. It had to be recognized , however, that
from the very nature of the method that there are more
possible approaches to the problem than could be physically
realised. For instance in principle it would be possible to
vary all the molecular parameters, e.g. mass, bond lengths,
interaction potentials etc., at will giving an immense range
of model fluids that could be studied. With such a plethora
of choices a strategy had to be developed which would produce
some relevant results. One approach would be to evaluate and
compare the rheological properties of tried and tested models
of liquids but this would be of little use as the number of
variables that have to be changed would render any comparisons
worthless in terms of extracting information on the effect of
the molecular characteristics. It is exactly this situation
that the experimentalists find themselves in and by using MD
was hoped could be avoided. A second approach would be to use
purely hypothetical molecules, hard cubes or triangles
perhaps, which although they are more likely to lend
themselves to an exact theoretical treatment bear little

resemblance to any real molecule. The fact that a model
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molecule does not resemble ény real one is not particularly
important in this case as we are looking at the way changes in
the molecule effect its flow properties. It could well be
that to gain some understanding of the phenomena of shear
thinning, say, we first of all have to find a system which
does not shear thin and then to find out what changes have to
be made to allow shear thinning to occur. As it has already
been shown that LJ argon [1] and even hard spheres [56] shear
thin we are at once looking for simpler systems. However, on
the other hand it may be better to keep some degree of reality
and look at the differences in the rheological properties of
two or more very similar molecules. In general it has been
this final approach which has been used in the hope of
maintaining a modicum of contact with the real world but

without the restrictions thereof.

As there already had been several studies of monatomic
fluids under shear [1,2,49,53,56,57,58,59] it was originally
intended to extend these kind of studies to more complex
molecules consequently it was decided for several reasons to
start by looking at the next simplest molecule, the two centre
model of a diatomic. Firstly, there already existed
interaction potentials which had been used to model adequately
the equilibrium properties of such molecules as N, [108], 'F;,
Cl; and Brp [39] and thus the data existed withiw;;ch the

performance of a diatomic MD program could be compared.

Secondly, Evans [60] had already applied a steady state shear
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method to chlorine at a low density in order to evaluate its
shear viscosity. This would allow a comparison between the
direct and perturbation methods of viscosity determination as
outlined in the previous chapter and that of an external
source. Thirdly, the diatomic model can easily be altered to
give a different molecule most simply by changing the bond

length to either increase or decrease the anisotropy.

3.2 Chlorine Model and Computational Details

A program was developed to model the single component
homonuclear diatomic fluid chlorine. The model for the
interaction potential has previously been used by Singer et al
[39] and is shown in diagrammatical form in fig.3.l. As can
be seen the model consists of two sites a distance 1 (the bond
length) apart which interact with sites of other molecules

through the LJ 12-6 potential

12

o8]

where €/k=173.5K and 0=3.353R. 1Initially the reduced bond
length, 1*, was set equal to ©0.69841 and the mass of a
molecule;;as in all cases l.178*}9:?555‘. The use of these
parameters has been shown [39] to give a good fit to the
experimental equation of state of chlorine along the zero

pressure isobar. The equations of motion were integrated

using the constraints algorithm as described for linear
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Figure 3.1

Model diatomic.




molecules, sec.2.6, with a time step of, unless stated
otherwise, ﬂ.B*JQjAs, . The potential was truncated at a
distance of 2.50 and the appropriate long range corrections to

the energy and the virial were made.

3.3 Chlorine Results at T~260K, Pﬂﬁ,;jf=ﬂ.6ﬂ8 and;;f=1.ﬂ

The program was tested by monitoring the total linear
momentum and the total energy. No perceptible drift was found
in either quantity and the energy was conserved to within
+0.05%. A point was then chosen close to the MD calculated
[39] zero pressure isobar at }f (= Tk/€) ~ 1.5 and

9*(=N03/“V)_= 0.48243 and equilibrium simulations were performed.

Parametrised equations already exist [39] for calculating the
total energy, U, the pressure , P, and the diffusion
coefficient, D, for this system as a function of temperature
and density. The results of two simulations for N=256 and
N=2048 molecules, the latter using a link cell version of the
program (see Appendix 1.), are shown in table 3.1 together
with the predictions of the parametrised equations [39] in

parentheses.
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Table 3.1 A comparison of the total energy, pressure and
diffusion coefficient as determined by EMD simulations on
model chlorine with the parametrised equations of Singer et al

[39] at a reduced number density of ©.48243.

T/K U/3mol”* P/bar D/10°m’s '  Length N
I of run
/ps
261.1  ~-12000 16463 4.7+0.3 24.9 256
(-12050+70) (29+64) (4.3+0.4)
261.4 ~12046+25  40+20 4.7+8.2 10.8 2048

(-12040+70) (34+64) (4.3+0.4)

The comparisons in table 3.1 are quite favourable and
establish the reliability of the basic program. It was then
adapted for determining rheological properties by NEMD using
the two techniques discussed in sec.2.12. Previously Evans
[60] had determined the shear dependent viscosity of a
slightly different chlorine model [39]
(0=3.332%,1%=0.63,€/k=178.3K) at a similar state point
(P~G,Qf=ﬁ.461,1?=l.532) using his homogeneous shear method.
The differences between the model and the state point used
here and that of Evans were considered to be small enough to
allow at least a qualitative comparison between the methods

used.

Starting from equilibrated configurations of chlorine at
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the state point (@*=0.48243, Ifhd.S) the perturbation and
direct methods were applied to systems of 256 molecules. The
procedure for the perturbation method was to obtain the stress
as a function of time for an equilibrium run of 150 time steps
(%1.2ps) and then for the same amount of time having applied a
step function in shear rate, &Y, to the same initial

configuration. The response A0(t) was then averaged over

twenty of these 'segments'. At the same time the difference

in the alignment tensor AD(t), where D is given by

was obtained also to monitor the response of the collective
orientation to the shear flow. With an actual mechanical
perturbation it was found that for a Ay of less than ~40§:1
the stress response became subject to truncation errors
because of the small differences between the stress in each
run as compared to the magnitude. In this case a value of
Ay=125s ' was used throughout to avoid this problem.

For the direct method a step function in shear rate was
applied to an equilibrium configuration in the manner
described in sec.2.15 and sufficient time was allowed for the
system to achieve steady state (~1000At). The properties of
interest were then averaged over an amount of time ajudged to
give reasonable statistical precision. For the stress the

problem is one of producing in the system a response

98



significantly different from the inherent uncertainty, ~10ﬁb’.
This immediately imposes a restriction on the lower limit of
the shear rates that can be used as the viscosities of these
materials is generally ”JQ:iPjS,SO typically the lower limit

on the shear rate is, from n=o/y, -Jnlos_L . For these

calculations two shear rates were employed ‘Zﬂﬁﬂpioéﬂ' and

=10 3_1 which are in the same range as those used by Evans
[68]. As in the case of the perturbation method the alignment
tensor can be calculated but this time the property of
interest is its mean value, <2>. Unlike the stress tensor 2
is always symmetric and at equilibrium the average values of
the elements of the alignment tensor are ﬂk¢e=ﬂ and
7<Dam>=l/3' for «,B=x,y,z, showing no preffered alignment of
the molecules. Under shear it is likely that the off-diagonal
component that couples most to the flow will be that in the

same plane as the flow i.e. D The effect on the

Xz *

on-diagonal elements is less predictable but at all times

The significant components of o and D from the results of
these steady state calculations are given in table 3.2. The

shear rate dependent viscosities, n(y) = <oxz>/<)"> . and

orientation coefficients, xd(y):=<pxz>/<7> ,robtained from the

simulations are given in table 3.3.
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Table 3.2 The mean significant components of the stress
and alignment tensors obtained from the steady state

calculations on chlorine at ~260K.

/10*%* foxzz ,<°xx> <? v? f?zg?t, Length
— /par /bar /bar /bar of run/ps
4.992 112422 1461  -45+61  -8+49 44.0

99.96  2126+49 -889+75 -636+80 -1219+80 40.0

#101% o > Pp>1/3 Dy p-1/3 D13
4.992 0.014iﬁ.ﬂﬂ7 ﬂ.ﬁﬂ3iﬂ.ﬂﬂ9 -ﬂ.ﬂﬂ4iz.ﬂ68 @.ﬂﬂliﬂ.@lﬁ

99.96 0.133+0.004 ©0.102+0.904 -0.040+0.008 -0.062+0.0908

Table 3.3 The resultant shear viscosities and orientation
coefficients obtained from the steady state calculations on

chlorine at ~260K.

$/10*% n(¥)/mpPa s X4(») /10" *3g
4.992 0.225+8.045  (.280+0.150
99.96 0.213+0.005  0.133+0.004

The results obtained by Evans [60] for the viscosity of a
slightly different chlorine system are plotted, along with the
results given in table 3.3, in fig.3.2 as a function of the
square root of the shear rate. As can be seen their is good
agreement between the two sets of data when one takes into
account the errors and the different model parameters used.
Evans [60] estimates the zero shear viscosity to be

@.2423mPa s whereas a reasonable estimate of Nn(@) from the two
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points calculated here is 0.23+@.02mPa s. Both curves show
little shear thinning behaviour, as would be expected at this
high temperature, low density point, so the extrapolations
involved in estimating n(@d) are quite valid and probably not

in error by more than 10%.

The point of using two methods of NEMD was to evaluate
their comparative usefulness. To do this for the alignment

and the viscosity the responseSaAo&B

(t) and AD_.(t) are
plotted in fig.3.3. From the sté;éy state calculations the

expected plateau value for the stress is
geﬁ=(ﬂ.23iﬂ.62)*}g:§f125 = 0.0288+0.0925Pa and this is marked
on fig.3.3 as a dotted line. The best statistical fit of this

response to a single exponential of the form

29,,(®)

gyt =N = eplet/Ehy |

gives the values‘3;= @.224mPa s and T = @.12ps. One further
piece of information that can be estimated from the response
is the infinite frequency shear modulus, Gog- + As Aoiz(t) is
related to the integral over the stress auto—correlagiggi

function through
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then substituting for Cg(t) and differentiating w.r.t. time

gives

03
_dt

= AF G Cg(t) - .

Now as ésUD=1 Go can be simply estimated from the initial
slope of the stress response. In this case a value of G of

1.9GPa was obtained which is the same order as that found for

many liquids experimentally [23].

The information gleaned from the perturbation technique
is also theoretically obtainable from equilibrium MD by way of
evaluating the stress correlation function. From the chlorine
equilibrium simulation at this state point for N=2048 the
stress was stored and correlated. As the length of the
simulation was only 1@.8ps (1350At) the amount of averaging
was small but as there are six possible off-diagonal

components of the stress tensor . (oxz czx)/z 5 (axy+ cyx)/z '

Myy

(0,,*+ @ ZL)/i v (O Oy /2 s (O, 0,.)/2 and (o, - . i)/z the

1£§E7£hreé obtaiﬁed by rotation ofrghe stress tensor by 45°
about the x,y and z axes [77], and as each time step is a
possible time origin compared to the perturbation technique
there is much more averaging possible. The resulting
normalised correlation function'?gggl is shown in fig.3.4.

The shear modulus obtained from the mean squared stress,

was 2.4GPa and althoughrthe inté&?giiover the correlation
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Figure 3.4 The normalized stress correlation function
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function is subject to large errors estimates of the viscosity
in the region 60—100At, which is the plateau region from the
perturbation result, give values of around 90.23—@.24mPa s in

good agreement with the NEMD methods.

For AszUﬂf, fig.3.3, it is difficult to tell whether the

response has reached a plateau value or not as the noise

begins to swamp the signal at around 100At. However, if we

assume a relation of the form ‘<sz> = xd()")o") , which is

analogous to the Newtonian stress/viscosity relation, then
using the same extrapolation procedure for n(¥) an approximate

value of Xdﬂn=0£ﬁldﬂzs was obtained. This then gives a

& (w) of 125*25.3*}[’7727?@.38*1023 which, considering the

approximations involved, suggests that tmxz(t), is approaching

close to its infinite time wvalue.

The results obtained from these initial studies have a
number of possible implications. Firstly, both the NEMD
methods used here and that employed by Evans [60] give results
which are in good agreement. This is an important result as
it implies that the viscosity measured is that of the actual
system and is, therefore, method independent. Secondly, it
appears that for a similar expenditure of computer time the
steady state method is a more efficient and more precise way
of calculating n(@). This is a tentative conclusion as it is
based only on the results at one state point. At higher

densities the degree of shear thinning will no doubt increase
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making extrapolations to ¥=0 difficult but as has already been
seen there are the problems in the perturbation technique of
deciding whether the stress has reached its plateau value and
determining what it is. This is further borne out by the
response for the alignment which even for this low density
point shows little signs of reaching a steady state value
before the noise becomes too great. The effect of increasing

the density can only compound these problems.

Thirdly, comparisons between the perturbation technique
and the Green-Kubo method suggest that, although in this case
there is a large difference in system size, both can produce
at least the short time behaviour of the stress relaxation
function with ‘possibly the correlation function approach being
more efficient because of the greater averaging possible. For
the viscosity it turns out that both give similar values at
about the same time but without the steady state results it
would be difficult with either to put any degree of certainty
on the viscosities obtained. Where the two methods do
apparently disagree is in the value for Gy ,1.9GPa from the
perturbation response and 2.4GPa from the ﬁean squared stress,
without determining the actual error bars on these results it
is in fact difficult say whether they do disagree at all.
However, it is likely that the value obtained from the mean
squared stress is the more accurate as it is an equilibrium
property and probably in error by at most 10% from the spread

of results obtained from the various off-diagonal components.
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A possible explanation of the disparity is that the G“,
determined from the perturbation response is calculated from
the difference in stress one time step after the perturbation
has been applied and is thus only an approximation to the

initial slope

dao (t) Ao (At)

® O ®

which will if anything underestimate the limiting slope. A
test of this would be to perform perturbation calculations

with progressively shorter time steps but as’' Ge is only of

minor interest it was not thought worthwhile to do this.

From these conclusions it was apparent that one of the
next steps would be to test these methods under less
favourable conditions at more interesting points i.e. where
the equilibrium viscosity is much higher and where shear
thinning is more pronounced. This would establish, for
instance, whether the perturbation method was of any general

use in these systems.

In a systematic attempt to evaluate the effect of
changing the molecular characteristics on the rheological
properties, a second model liquid was generated by extending

the bond length from 1¥=0.60841 to 1¥=1.0 whilst retaining €

e el

and o constant with the intention of comparing results with

those obtained for model chlorine. This immediately poses a

145



problem as the actual extension of the bond length causes a
drastic change in the equilibrium properties. As we are
trying to isolate the effect of increasing the bond length
alone on the rheological properties the problem is to separate
this from the changes induced by the different equilibrium
conditions. Ideally experiments would be performed at
equivalent states. For example certain monatomics modelled
with a L-J 12-6 potential with differing equilibrium
properties in real terms can be brought to corresponding
states by use of reduced variables [100]. However, for
diatomics the introduction of the extra variable, 1, makes
this far more complicated even for models of the same o and €.
In the absence of any obvious corresponding states
prescription it was decided to perform the calculations at
states of approximately equal temperature and pressure. The
only justification for this being that this would be the case

in experiments on actual fluids.

To find the density which corresponds to P~@ for the

1¥=1.0 model a number of short simulations ( 509At) were

performed on a system of N=256 molecules at varying densities
at 260K. By a process of extrapolation and interpolation a
figure of Q*=G.32157 was arrived at aé being close enough to
the zero pressure isobar to allow the desired comparisons. In
the same way as for the 1¥=0.608 Cl, a series of perturbation

experiments were then performed starting from an equilibrated

configuration. Averages were this time taken over ten
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segments of 150At and the mean equilibrium properties from the
unpertﬁrbed system are compared with those obtained from the

equivalent runs for the shorter bond length model.

Table 3.4 A comparison of the equilibrium properties
obtained for 1¥=1.2 and 1¥=g.608 Cl, from 19 and 20 runs of
1.2ps respecEI;ely. U=total energy, ®=total potential energy,
T¢=translational temperature and Tp.=rotational temperature.

* U ° T Ty Ty P
. /Jmol /JImol /K /K /K /bar
1.0 -5830+80 -11240+40 259.9+2.9 258.8+2.2 261.6+5.6 61+51

@.608 ~-12000 ~-17500 261.1+1.9 261.6+2.3 2690.4+2.4 16+63

The combined effect of increasing the bond length and
reducingugfrfrom 0.48243 to @.32157 to produce systems at
about the same temperature and pressure can be seen to
decrease by more than a third the potential energy of the
fluid. The reason for this is quite simply the decrease in

the density of interaction sites.

The off-diagonal stress and alignment responses obtained

from these perturbation experiments on the 1*=l.ﬂ system are

shown in fig.3.5. From the initial slope of the stress
response and the best fit of a single exponential of the same
form as used for the 1¥=0.608 case the following values were

obtained Ge=1.2GPa, ﬁ;@.ﬁ92mPa s and T=@0.077ps. A single

steady state shear simulation ath=12.5*}9¥?f1:'of length 4@ps
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nﬂ?)=(ﬂ.21+ﬂ.ﬂ7)*1d#i§} Using the steady state viscosity to
é;;;;ct the long time value of the stress response gave
;f?x20~)=0.0164+0.ﬂﬂ25Pa which is shown as the dotted line on
fig.3.5. For the alignment the steady state figure forizdgﬁi
predicts a MADXZ(“)e=2.6+Q).8. As the values of n and X; used
to predict théiiimiting stress and alignment responségware
likely to be, if anything, underestimations of the actual zero
shear quantities it appears that neither has quite attained

its long time limit.

Comparisons between the two systems‘reveal that the
viscosity , shear modulus, and best fit relaxation time are
all ~40% less in the 1¥=1.0 case. This is very similar to the
difference in the potential energies. There is also a clear
tendency for the 1%¥=0.6908 system to realign to a greater
degree and at a faster rate than the lf=l.@ system. This too
is probably a result of the density being lower in the 1¥=1.0
case allowing the molecules more opportunity to randomise
their orientations and thus reducing the degree of alignment.
Some justification of this hypothesis can be given by
comparing the relative free volume of the molecules. Assuming
that the effective 'volume', Vo, of a molecule is given by

that of a spherocylinder
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or Ve == =23 +1%2)

L B

which for 1%¥=1.0 gives V: =1.309 and for lt=ﬂ.6@8 gives
V:=l.001. Now the mean reduced volume available for one
molecule,*vzﬁ, is simply given by l/pf and so from the
densities ‘Vp=3.11¢ for 1¥=1.0 and v =2.073 for 1%¥-0.608.
The percentage free volume, "S(V;:i: V:)/V:)*IOO_ are then 58%
for 1¥=1.0 and 52% for ;?=@.608. Alternatively V, can be

defined as that of two overlapping spheres in which case

Ve =g (1+1.51% 0.51%%)

the percentage free volumes then become 66% and 55%
respectively. This is a very simplistic approach and the
difference may not appear large but to change the percentage
free volume from 52% to 58% implies a change in erfrom
0.48243 to ©.41958. This in turn implies, from the equation
of state [39], an increase in temperature of ~90K if zero

pressure is to be maintained.

These preliminary comparisons establish a basis from
which it will be possible to qualify comparisons at a
different state. Intuitively it might be expected that a
longer molecule would produce a more viscous system what has
been shown here is that this is clearly dependent upon the
choice of conditions at which to make the comparisons. To

obtain further information from this approach it is necessary
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to change the applied conditions. To increase the density and
maintain contact with the initial studies there are two
possibilities either keeping P constant and decreasing T or
increasing P and keeping T constant. The increased density in
either case would probably lead to an increase in the degree
of shear thinning and shear induced alignment. As there is
some practical interest in the effect of high pressure on
liquids in the field of lubrication it was decided that

experiments would be performed at an elevated pressure.

3.4 Chlorine results at T~260K, P~1GPa, 1*¥=@.698 and lf=l.@

To make the experiments at different conditions
worthwhile it was important that there was a substantial
increase in the viscosity to enhance the non-Newtonian
behaviour and to emphasise the differences between the two
model systems. It is known that many fluids show an

exponential dependence of viscosity on pressure [117],

@) = RO

where « is the pressure coefficient of viscosity and is
typically of order 419i!19?§éj14« [117]. Thus for an increase
in the viscosity byra factor of ten pressures of ~1GPa are
required. This is also the kind of pressure that can be

generated in an EHD contact so this situation would also be of

practical interest.

To generate a high pressure equilibrium configuration, in
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the 1¥=0.608 case, without any knowledge of the P vs @
isotherm the following procedure was adopted. A sample of 256
molecules at equilibrium at the original state point
(T=26ﬂK,P~@,Qf=ﬂ.48243) was compressed over a period of 6ddat
by reducing the volume intermittently (~10At) by about ©0.5%
whilst maintaining the temperature constant by velocity
scaling. From the resultant pressure increase a value of the
reduced number density of ©0.66 was deduced as being of the
correct magnitude to give a pressure of ~lGPa. An equilibrium
configuration was then obtained at this density in the usual
manner and the perturbation technique was applied to determine
the stress and alignment responses. Averages were taken over
ten segments of 1.2ps each and from which the mean pressure in

the non-perturbed runs was calculated to be 11300+10@ bar.

To equilibrate a sample of 1¥=1.¢ Q}E at the same
temperature and pressure use was made of a program developed
to perform MD in the (N,P,H) ensemble using the method
described by Andersen [118] and others [119,120,121]. 1In
contrast to the usual MD ensemble (N,V,E), where the volume
remains constant and the pressure fluctuates, in this method
the volume is allowed to change in accordance to the imbalance
between the calculated pressure, ?é, of the system and the
required pressure, Pr, such that

V= (Pc - POM,

where M is a constant. This enables the mean value of the

pressure , <P>, to be set to any prescribed value Pp..
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The procedure was then simply to start from an
equilibrium configuration of lf=l.ﬂ Cl, at T=260K, P~@ and
then to run the 'constant' pressure program with P,.=11300bar
whilst maintaining the temperature at 260K by periodically
rescaling the momenta. After approximately 1900@0At the volume
was deemed to have relaxed to the value corresponding to the
required pressure. This gave a reduced number density of
@9.55124. Once again an equilibrium configuration was
generated and the perturbation technique was applied with
averages being taken over ten segments. The mean
thermodynamic properties resulting from the unperturbed runs

for both versions of Cl; are shown in table 3.5.

Table 3.5 A comparison of the equilibrium properties

obtained for 1¥=1.0 and 1¥=@.608 Cl, from 18 runs of 1.2ps

each.
1* U -3 i - gy P

/3 mol ~ /J mol ~ /K /bar
1.9 -10150+80 -15640+40 264.5+2.2 11530+80
2.608 -15670+100 -23030+60 258.8+2.8 11310+109

The densification of the two systems, apart from
increasing the pressure, leads to a more negative potential
energy as the number of molecules residing in the sphere of
interest of a particular molecule is increased. Comparisons
with the results at the lower pressure (Table 3.4) show that

the difference in potential energies between the systems has
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dropped by ~lﬂ@ﬂgjggj1i.e. between 15% and 20% the
difference at P~@. The discrepancy in the pressure is
probably caused by the rather high temperature in the71f=l.ﬂ
case. The likely cause of this is the thermalisation
procedure used at the start of each new segment which
calculates the temperature of the initial configuration and
then rescales it to the required value before the dynamics are
performed. With averages being taken over ten segments only
there is the possibility that the thermalisation procedure
adds energy to the system more times than it takes it out.
Thus causing the temperature to be higher than required for
these runs. Over a large number of segments, however, this

must produce an average temperature close to that specified.

In an attempt to improve the signal to noise ratio , in
these perturbation experiments, a delta function strain rate
was appiied for one step as this has been shown to be
numerically superior to the step function approach [71]. 1In
this case the response is proportional to the actual stress
correlation function rather than to its integrand. The
off-diagonal stress and alignment responses are shown in
fig.3.6. These were obtained by numerically integrating ,
using the trapezium rule, the curves which result from the
delta function perturbation. The significant stress response,
éﬁgﬁt) . has been fitted to the two exponential form suggested

by Kivelson and Allen [74]
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Figure 3.6

_AO«B(t) and AD“B(t) vs. t,

chlorine, 1¥-0.608, T 260K, P 1GPa.
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Figure 3.7 . AO«B(t) and AD“B(t) vs. t,

chlorine, 1¥=1.0, T~260K, P~1GPa.




B =) = (L - exp(-t/Ty)) + Np(l - exp(-t/T2))

for both cases. As before the initial slope,

Ao (At) -,
an(0) . _xz » ives an approximation to Ge which
‘&  “Aay + 8 PP .

in this case is given by

G = n1/71 +"l'\2/T2 o

The parameters for the best fit and the predicted viscosities,

n=n,M, , are given in table 3.6.

Table 3.6 The best fit parameters to the form of two
exponentials for the stress responses obtained from the

perturbation experiments on 1f=l.ﬂ and 1f=ﬂ.608 at T~260K,

P~1l.1GPa.
X s
1 Ty T2 ny Uy G n
/ps /ps /mPa s /mPa s /GPa /mPa s
1.9 d.85 2.98 1.21 g.52 8.0 1.74
g.608 g.24 3.98 g.59 g.44 8.2 1.83

From figs.3.6 and 3.7 and table 3.6 the indications are
that the situation at P~@ has been reversed to some extent.
The larger stress response in the ;f=l.@ case suggests that it
is now the more viscous fluid. The shear moduli of both
fluids have increased, as might be expected, with the lf=l.@
Cl, again increasing a larger amount such that the {ggfs are
almost equal. There is also a close similarity between the
form of the responses themselves, at least initially, where,

from the fit to two exponentials, the relaxation times are the
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same. For the ;f=@.6ﬂ8 case it is not clear whether HAOxz(t);
has reached its limiting value but for ;f=1.@ it appeégg‘g;g
stress is still rising at the end of the 150At that the
responses were followed for. This casts doubt on the values
given for the viscosities in table 3.6 which will almost

certainly be underestimations of the actual viscosity.

For the alignment there is no doubt that, in either case,
fpxz is far from its long time value. The alignment response
fo;ﬂthe lf=ﬂ.668 is again faster than the }f=l.Q Cl, but
comparisons with the results at P~@ show that whereas for
lf=ﬂ.6ﬂ8 ADXZ responds more slowly at the higher pressure for
W}f=l.@ tﬂgi;ééponse of‘Asz‘to the perturbation is, if
anything, slightly fastggji The reasons for this are not clear
but it is possibly a density effect. At the low density limit
the scarcity of interactions will probably cause the rate of
realignment to be very slow and at high densities the
hinderance to rotations will have the same effect. 1In the
intermediate density region the rate of alignment will first
increase with density , as interactions between molecules
become more frequent, and then decrease as rotations become
hindered. This could possibly explain , to some extent, the

results for the rates of realignment.

Having applied the perturbation technique results were
then obtained at a number of shear rates using the steady

state method. The mean thermodynamic properties and the
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length of the simulations are given in table 3.7, the mean

stress, resultant viscosity and normal pressure components

( Po==®

aﬁ;) are given in table 3.8.

and in table 3.9.

the

significant components of the alignment tensor are shown.

Table 3.7 The mean thermodynamic properties obtained from

steady state shear calculations on thef;f=l.@ and lf=ﬁ.6ﬂ8 Cl,

systems at T~260K and P~1GPa.

lle

(1*=1.9)
¥/10*%1 U/J mol * 79/JJEQ:1 T/K P/bar Length
- of run
/ps
3.9 -10380+40 -15780+40 259.9+@.1 11360+80 64
0.502 -10420+40 -15820+40 260.0+8.1 11320+58 64
@.754 -10350+40 -15760+40 260.0+0.1 11400+68 136
1.247 -10350+40 -15750+40 260.0+0.1 11350+7¢ 112
2.490 -10240+40 -15650+40 260.0+8.1 11450+70 72
4.990 -10090+40 -15490+40 260.1+8.2 11610+48 72
12.50 -9640+50 -15050+50 260.5+8.4 12060+50 32
(1*=p.608)
310%™ U/ mel”! ®/imelt  T/K P/bar  Length
of run
/ps
@.824 -15600+40 -21010+40 260.1+8.1 11340+70 188
1.243 -15590+40 -20990+40 260.1+8.1 11370+50 112
5.0 -15420+30 -20820+30 260.1+8.1 11600+40 88
12.5 -15060+40 -20480+50 260.3+8.1 12078+70 72
24.98  -14400+30 -19860+30 262.8+0.1 12930+30 40



Table 3.8 The mean shear stress, resultant shear rate
dependent viscosity and mean normal pressure components from

the steady state shear calculations on‘;f=l.@ and ;f=ﬂ.6@8 g}ﬁ‘

at T~260K and P~1GPa.

117

(1*=1.9)

—Zégffiirfgg/bar‘jgzg/mPa s fxﬁ/bar Pyy/bar P ,/bar
0.502 242+23 4.81+0.47 11330+80 11370+140 11250+70
g.754 302+47 4.91+0.62 113990+100 11460+110 11360+80
1.247 503484 4.04+0.68 11280+120 11380+130 11400+80
2.496 776453 3.12+48.21 11290+60 11570+70  11480+70
4.990 1016+41 2.03+0.98 11399+90 11690+80 11750+110

12.5¢0  1870+36 1.50+0.03 11670+110 12050+60  12460+100

(1*=0.608)

,ﬂ,l_o_is—: &@/bar n(¥)/mPa s ) fg/bar Pw/bar Egz/bar
g.824 261+78 3.17+@.85 11390+92 11280+1908 11370+100
1.243 368+62 2.96+9.50 11340+100 114090+79 11380+100
5.0 1200+58 2.40+@.12 11430+140 11590+130 11780+110

12.5 2957+42 1.65+9.03 11650+120 12018+130 12550+120

24.98 3247486 1.39+0.03 12200+70 12920+80 13680+50



Table 3.9 The mean significant components of the

alignment tensor obtained from the steady state shear

calculations on the lf=l.ﬂ and 1*=6.608 Cl, systems at T~260K

The shear viscosities are plotted as a function of ¥

in fig.3.8 for both systems.

and PQIGPa.
(1*=1.9)

#/10'%™ D,
0.502 0.030+0.012
0.754 ©.045+0.007
1.247 ©.066+0.008
2.49  ©.080+0.006
4.99  ©.097+0.006

12.56  0.201+0.007
(1*=0.608)

$/10'%7! Dyr
0.824 ©.027+0.009
1.243 ©0.043+0.005
5.0  0.107+0.006
12.5  0.141+0.004
24.98  0.176+0.005

D

0.005+0.9008

1118

2.010+0.013
0.028+0.007
2.035+0.010
0.070+0.012

.095+0.007

Dxx_l/3

-0.002+0 . 009

.001+0.010
0.036+0.011
?.068+0.008

0.119+0.007

Dyt
@ .007+0.009
~3.011+0.007
~3.016+0.006
-3.003+0.010
~3.018+0.010

-0.029+0.006

'l?yy—1/3
a.aé;ip.ﬂ@9
-9.009+0 . 006
-0.020+0.008
-0.032+0.006

-0.069+0.007

ABzz—l/3
0.002+0.009
0.001+0.012

-0.012+0.007

-0.033+0.010

-0.9051+0.014

-0.068+0.009

p§§—1/3
-0 .004+0.006
0.007+0.012
-0.016+0.009
-0.036+0.008

-0.051+0.007

¥

As predicted by the perturbation

result the,;f=1.ﬁ‘01£ is now more viscous than its shorter

bond length counterpart.

underestimate n(@) by a factor of, at least,

case.
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This underestimation of the zero shear rate viscosity
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n(») vs. #, 1*=1.0 (0) and 1*= 0.608 (4))
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is a result of not being able to determine accurately the form
of the response due to its slow relaxation compared to the
time before which statistical noise dominates. Clearly the
rise of f?gz“»‘ to its long time limit must be particularly
slow compared to the initial relaxation and to compute the
full response using the perturbation method is, at present,

uneconomic.

3.5 The Shear Rate Dependence of the Viscosity

There is a marked degree of shear thinning in both
systems with the ;f=l.ﬂ case showing the noticeably greater
effect. The eventual result of this is that at the higher
shear rates the viscosities tend to similar limiting values in
each case. No fully satisfactory theory has ever been
produced which correctly predicts the shear rate dependence of
the viscosity although many have been proposed
[73,74,78,79,82,83,84,86]. Some of these theories are
empirical in their approach [86] to the problem but others
specifically take into account molecular considerations. The
theories of Ree-Eyring (RE) [73] , Kawasaki and Gunton (KG)
[74] and Hess [79,80,81] are examples of these more
fundamental treatments. The RE and KG theories are
particularly interesting as RE theory is favoured by
experimentalists [18] whereas what data that has been produced
by NEMD has been interpreted in terms of KG theory. Hess's

theory is more recent and has largely remained untested but it
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does specifically take into account the alignability of
molecules. In an attempt to evaluate these theories and to
try and estimate n(@) the curves predicted by these theories

studied here.

The predicted form of the shear rate dependent viscosity

is in each case :-

RE N = n0) sinh (TG _ (3.5.1)
KG n = n(0) - ast B
Hess  n(¥) = n(0) [1 — k(¥Tp) 2/(R® + (?rh)z)]. ,, (3.5.3)

In Hess's equation R is a function Of/ZZh but to first
approximations R=1 [80] so this has been used throughout. For
egqns.3.5.1 and 3.5.3 best fit curves were obtained by varying
the adjustable parameters, n(@) and (T, for eqn.3.5.1 and n(@)
. k and 7, for eqn.3.5.3, to minimise the root mean square
difference (RMSD) between the predicted curves, n' (), and the
actual data, 'n(¥) . The RMSD is defined as

‘ Np g

'RMSD = [%p '21(1\(?1) - )? ] s 1(3.5.4)

i= . .

S S S S

where?Np is the number of experimental points. As the curve

in the KG prediction is of the form y=mx+c the best fit was
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simply found by the method of least squares where the slope,

-A, is given by

% Np %
Np } “(71)71” = [ ?i” ] [ 2 n(»;) ]

i=1 i=1 i=1 5
-— A = (3.5.5)

W AT 3]

and the intercept, n(d), by

[ e ][ S0 - [ ] [ o]
%E[ﬁ]

n(0) = (3.5.6)

The best fit curves are shown for both systems in
figs.3.9 and 3.19 and the parameters used are shown in table

3.190 along with the RMSD's.
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Figure 3.9

n(») vs. % 1%=1.0, T~260K, P~1GPa, (A).

Fit to the predictions of the theories of

Hess ( ), Ree-Eyring (- - -) and

Kawasqki—Gunton (=r—=).
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Figure 3.10

n(#) vs. 3%, 1%-0.608, T~260K, P~1GPa, (A).

Fit to the predictions of the theories of
Hess (——), Ree-Eyring (- - -) and

Kawasaki-Gunton (—=—'=).
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Table 3.10 Best fit parameters and root mean square

differences for various predicted curves for chlorine
viscosity data at T~260K, P~1GPa, a) for all shear rates b)for
all except the highest shear rate.
(a) (b)
1*=1.0  1*-p.608 1*=1.0 1%-0.c08

Hess n(9)/mPa s 4.60 3.08 4.50 3.04
Th/Ps 35.9 13.2 27.5 13.8
k 9.73 g.64 g.88 9.57
RMSD/mPa s g.20 2.07 g.24 g.10
KG n(2)/mPa s 5.16 3.49 5.80 3.65
M0 e 114 0.47 1.69 0.56
RMSD/mPa s @g.36 g.12 g.18 @.93
RE n(d)/mPa s 4.67 3.99 4.67 3.09
Tr/ps 97.2 29.0 104.0 31.6
RMSD/mPa s @.22 2.10 g.21 2.07

A comparison of the root mean square differences reveals
that their is little to choose between the curves on a
statistical basis. Qualitatively the Hess and RE curves
correctly predict the appareht lessening in the rate at which
the viscosity decreases at high shear rates whereas the KG
line does not. This is not surprising as the curve quoted is
only the asymptotic limit which should fit the behaviour of

jﬁZj as /¥~»@ and not as ¥ . The infinite shear limits of
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the Hess and RE curves are Q@??EQD(E:k), and n(«)=0
respectively so Hess theory predicts a second Newtonian region
which there is some evidence for in polymer solutions [78].

In the low shear region there are again differences. As ¥-0
the slope gg(y) tends to zero in both the RE and Hess

an(»)__, %
dj’ T Ay

curves but for KG which means that the slope

is infinite at the zeroggheér rate limit. On a practical
basis this is probably beyond experimental detection as the
changes in the viscosity involved are very small. A similar
argument holds for the apparent lack of any Newtonian region
for all the n(¥) functions discussed. For Hess and RE theory

n(¥) only significantly differs (~5%) from n(@) if 7[;9t1

-l
so for T in the region of,;Qjégrthere is a large region up to
‘jgloss—f where the viscosity is apparently N(@). Even for the

3
KG expression an A value of ~{1Qj%ma S? -+ typical of the

fluids studied here, means that shear rates up to 1o°s"’

will
only alter the viscosity by ~@.lmPa s which is certainly
undetectable using MD and, as the highest shear rates
achievable using experimental techniques are ~Jgfst1, also by

real experiments.

Also given in table 3.10 are the best fits to all but the
highest shear rate points, the actual curves are shown in
figs.3.11 and 3.12. As has been found previously [70] this
procedure certainly produces a better fit to the KG
prediction. This is borne out by the RMSD's which are reduced

markedly for the square root formula when the highest shear
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Figure 3.11 As fig.3.9 but excluding highest shear

rate point.
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rates in each case are omitted whereas for the other two
functions there is little change. This approach to estimating
the ¥=@ viscosity is justified to some extent in that the KG

prediction is valid only as ¥—0.

These various attempts at fitting the n(¥) data do not
lead to any firm conclusions. It is clear that more accurate
data is required over a larger range of shear rates for a
number of different systems to say if any of these three
predictions accurately represents the data. As far as
determining n(@) is concerned this rather inconclusive result
means that there is a range of estimates forng(ﬂ). The zero
shear viscosities are consequently quoted as n(@)=5.2+0.7mPa s

for 1¥=1.0 Cl,' and n(@)=3.3+0.4mPa s for 1¥=g.608 Cl,.

3.6 The Pressure/Density Dependence of the Viscosity

Even with these rather large error bars it is still clear
that the effect on the viscosity of the increase in pressure
is markedly different between the two systems. The effect of
pressure on the viscosity is usually quantified in terms of

the pressure coefficient of viscosity, «, defined by

n(Pz) = n(Pylexp(x(P, — Py)). (3.6.1)

This coefficient was calculated for both systems and the

values obtained are given in table 3.11 together with the
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pressures and viscosities used to determine it.

Table 3.11 The pressure coefficients of viscosity

obtained from the data given for chlorine at T~260K.

Qlf P, /bar Pvz/bar n(py)/mPa s n(P,)/mPa s «/GPa '
1.0 o6l 11300 g.13 5.2 3.3
?.608 16 11319 2.23 3.3 2.4

On the basis of the differing a values it might be
concluded that the response of the viscosity of two very
similar systems to a change in a state parameter is unrelated.
How significant this is depends whether the viscosity is
directly or only indirectly dependent upon the state parameter
in question. 1In the case of pressure it could be equally well
argued that it is the change in density, caused by the
increase in pressure, which is the more important factor. The
change in density/volume with pressure is generally given by

the compressibility, B, defined as

B = - % av (3.6.2)

which as Ve« 1l/p is also given by

PNt

(3.6.3

do
P

As only two widely separated state points have been studied

and as the compressibility is not a constant at a particular
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temperature mean compressibilities have been estimated from

s ; y
B = %% (3.6.4)

DI~

A = _=

where A4p=¢,—9, , AP=P;-P,/ and §=(91+p.‘,;)/2'. - The resultant mean

compressibilities, given in table 3.12 along with the values
of the densities and pressures used, indicate theﬁ;f=l.@fqlg
system is certainly the more compressible of the two. This is
a reasonable result as the coﬁpressibility is an inverse
measure of the ability of molecules to pack efficiently and it
would be expected that the compressibility decreases as }f—*ﬂ

i.e. the sphere.

Table 3.12 The mean compressibilities obtained from the

data given for chlorine at T~260K.

1* e, . P,/bar P,/bar B/GPa !
1.6  ©.32157 ©.55124 61 11368 .47
0.608 ©.48243 .66 16 11310 .28

Having established the difference in compressibilities it
remains to be shown whether the viscosity is more a function
of density than pressure. To do this it has been assumed that

as Pxp a relationship similar to that given by eqn.3.6.1

might also hold for the density’

:n@ﬂ=n@ﬂ&ﬂ%@z—&”- . (3.6.5)
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With only two points it is not possible to test this
hypothesis but as for the pressure it is useful to calculate
and compare the two coefficients. These are given in table
3.13. along with the various quantities required for their

calculation.

Table 3.13 The density coefficients of viscosity obtained

from the data given for chlorine at T~260K.
X

B f1 o2 n(P,)/mPa s nR(P,)/mPa s %,
ol bt B sl \F2) %

1.9 @.31577 @.55124 g.13 5.2 l6.1

g.698 @.48243 @.66 g.23 3.3 15.0

Compared to the pressure coefficients of viscosity the 05*35
show good agreement considering the errors in determinigggihe
viscosity. It could be that this is purely a coincidence of
the conditions studied and does not stand up to the test of a
more thorough examination. The implication if it is correct
though is that it is the densification that occurs under
increasing pressure, at constant temperature, that is the

important factor in relation to the viscosity rather than the

pressure change itself.
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3.7 Shear Induced Alignment

The effect of shear on the alignment tensor is given in
table 3.9 and is shown graphically in figs.3.13 to 3.16. At
these higher densities there is an increased amount of
realignment of the molecules as might be expected. Quite
clearly the overall trend is the same in both cases with
molecules having preferred alignment in the +ve XZ quadrant
which principally affects the value of sz and Px&. AS,D&X

increases the constraint relationship Dxiﬂ) +D =1 ' means that

D
yy 2z

the values of Dy& and;Dzz must also change. It is found that

these two other components tend to decrease roughly by the

same amount for therjf=ﬂ.6ﬂ8 case but with Dzz decreasing

noticeably more than Dyy in thegjf=l.ﬂ case.

The one significant off-diagonal component of D is!sz as

ny and Dyz are effectively zero because of the symmetry of

the shea;j In both cases sz increases continuously with
shear rate though at the lower shear ratesvDxz is greater for
the lf=l.0 system but at the higher shear ratés the opposite
is true. Intuitively it might be expected that a longer
molecule would align to a larger extent than a shorter one.

This would not necessarily manifest itself in a larger value

of sz. This is so because sz can pass through a maximum and

decrease to zero again as sz=ﬂ if all the molecules are
aligned parallel to the x-axis. The maximum value of Dx

possible is #.5 which only occurs if all the molecule are
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Figure 3.13 D ($) vs. * 1%*21.0 (O) and

1*¥-0.608 (a), T~260K, P~1GPa.
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Figure 3.14 D ($)-1/3 vs. ¥, 1*-1.0 (O) and
1¥-0.608 (A), T~260K, P~1GPa.
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Figure 3.16
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aligned at 45 to the x-axis in the XgZ plane. As this
situation is highly unlikely and there is bound to be a
distribution in the y direction any observable maximum will
almost certainly be somewhat lower than ©#.5. This is not the
case for ?gx' however, which for all the shear rates that are

comparable is greater in the‘;f=l.ﬂ case indicating alignment

more parallel to the x-axis.

Two other orientation functions which have also been
calculated are the shear orientation coefficient, Xd, defined
as [79]

X =D (3.7.1)

and an extinction angle, ee:‘a;EI;;a*E;eviously [122] as

L 2D -
<D - D > ' fr !
XX b44

y 'ee = % tan (3.7.2)
g )

which is of the type measured in flow birefringence
experiments. The values of these two quantities are given as

a function of shear rate in table 3.14 for both the systems

studied and are shown as a function of ;9#

-in figs.3.17 and
3.18.
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Table 3.14 The shear orientation coefficients and

extinction angles obtained from the steady state shear

calculations on theg;f=l.ﬂ and 1%=0.608 Cl, systems at T~260K

and P~1GPa.

(1%=1.9)
$/10%87! X (9)/ps T 18e(¥) /deg
0.562  6.02+2.33 =
g.754 5.99+0.89 -
1.247 5.32+48.64  36.6+3.0
2.49 3.2248.22  33.5+2.7
4.99 1.96+8.13 29.0+2.4
12.5 @.92+0.03 27.341.1 )
(1*=0.608)
ij!QfEij Xﬁ(?ﬁ/ps EE£22/deg
0.824  3.28+1.08 -
1.243 3.44+0.40 -
5.0 2.13+8.12  38.2+2.4
12.5 1.13+48.03  34.8+1.2
24.98 0.70+0.82  32.1+0.8

As found by Kivelson and Allen [70] for fluorine xd'(f)ﬁ

becomes distinctly non-linear in i#n when the density is

increased. Indeed "xd()") behaves in much the same way as l'\(?){

for both systems, fig.3.8, implying some connection between

o»' ’ ' p By ‘ ‘
xz()’l and Dx2(7) although the nature of D__ tends to suggest

that this may be coincidental.
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xd(>") vs. 5’“, 1*=1.0 (D‘) and

Figure 3.17
1¥-0.608 (4), T~260K, P~1GPa.
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Figure 3.18

0o (¥) vs. ¥, 1%z1.0 (O) and
1*¥-0.608 (A), T~260K, P~1GPa.
Comparisons with the predictions of Hess’s

theory, 1¥=1.0 ( ) and 1¥=0.608 (- - -)




The second function, e

e’ is subject to more errors than

X4 because of the combination of three quantities. At the

lower shear rates the actual value of <Dx§_Dzz> was less than

the calculated error and thus gave indeterminate results for

®e. At the higher shear rates the jf=l.@ Cl, has a

consistently lower value of e, than the 41;6.6@8 Cl, which is

probably indicative of the greater amount of alignment in the
longer bond length system. Also included in fig.3.18 are the
predictions for g as determined from the Hess theory. Hess
theory in fact glves predictions for all the components of D

but these curves include undetermined constants. When

combined as in eqn.3.7.2 the constants cancel out to leave, in

the first approximation,

T 8g(¥) = -21- tan"(l/;’rrh). (3.7.3)

Unfortunately first approximation Hess theory, which is stated
to be valid for those systems which do not undergo a
transition to a liquid crystalline phase [80], predicts that
Dyy()")=0'\ for all ¥. This is obviously not the case and thus
Hagméﬁéérisingly the curves produced using eqn.3.7.3 and the

values of Tp from table 3.10 are not in agreement with the

experimental data.

To give a clearer picture of what the alignment due to
shear involves probability densities involving the direction

cosines of molecules have been calculated. The starting point
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is the bond vector associated with each molecule - 1i=rjs1rijs -

For a homonuclear diatomic the individual atoms are
indistinguishable so that a bond vector 1l has an equivalent
alignment to one with a value of -1;. To avoid this

degeneracy for a shear gradient in the XZ plane the following

direction cosines can be defined :-

b = iglizi/i,
D, = Iyliy1/1,
D, = 1 1ikl/i,

where 'ix'iy and iz are the components of the unit bond

vector. This normalization ensures that equivalent alignments
with respect to the direction of shear give the same value of
Dx,‘Dy and Dz. Probability densities were then obtained by

Aaiviaihg therregion between -1 and +1 into small equally sized
intervals of AD“ and accumulating in a histogram the number of
times a parti;diar value of D, occurs. It can be easily shown
that by dividing into regionégbf equal D s effectively4:¥§§e,
the resultant probability densities are flat for a completely
random distribution of bond vectors. Accordingly probability
densities, E(Egl’ have been normalized such that‘fﬁna)il for

all values of-D« when the distribution is random.

The results obtained for all three direction cosines at
two different shear rates for both systems are shown in
figs.3.19 to 3.22. The averages have been taken over an
interval of 8ps in all cases for systems considered to be at a

steady state at the particular shear rate. At the lower shear
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Figure 3.19 The normalised probability densities for

the direction cosines p(D«) vs. Do:

1¥-0.608, y=1.25%10*%°s”!, T~260K, P~1GPa.
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Figure 3.20 As f£ig.3.19 1%=1.0.
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Figure 3.21 As fig.3.19 1¥=0.608, »=25x10'%s1.
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. Figure 3.22 As fig.3.19 1%=1.0, »=12.5%10%%s"%.
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1

rate, y:L25*Hf°s— in each case, there is some deviation

from a flat distribution for p(DX) and p(Dz) whereas p(l)y) is

not significantly altered for either lf=l.ﬂ or,;f;@.668 Cl,.

For p(Dx) and p(Dy) there is a tendency for a symmetric

distribution to be set up with an excess of molecules aligned

in the +ve quadrant with a minimum in p(qm) at ~-@.5 and a

maximum at ~+@.5. Comparisons between the two sets of
distributions at this lower shear rate show that there is
little difference in them in keeping with the results for the

alignment tensor.

At the highest shear rates used the distributions become

. (4 3
more asymmetric for Dx and DZ' For gﬂDx) there is a large

peak at vaﬂ.8 showing that the most preferred orientation of
molecules is in the +ve XZ quadrant almost parallel to the

X-axis. p(Dz)-shows a different distribution with an almost

completeﬁiack of molecules aligned parallel to the z-axis,

Dz=i1.@. The majority of molecules have +ve values of,Dz

which again shows alignment in the +ve XZ quadrant. Thgwbeak
in GKD;) is at DZ ~ @.5 which is equivalent to a bond vector
makihérgn anglémgf 60° with the z-axis. These observations
hold for both systems even though the shear rates are
different. For p(Dy) there is a tendency, certainly in the
lfé@.6ﬂ8 case, fézggiignment parallel to the y-axis, D§=il.ﬂ,
to become unfavourable. As the y-axis is orthogonal £6rthe

plane of shear this shows up as a roughly symmetric

distribution for p(Dy) with a broad peak centred at Dy~0 which
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is in agreement with the demonstrated tendency for molecules

to align parallel to the x-axis.

3.8 Non-equilibrium thermodynamics

As discussed in sec.l.4 there has been some interest
shown in the thermodynamics of systems undergoing steady state
planar couette flow [90,91,92]. Hanley and Evans [99] have
argued the case for the modification of the first and second
laws of thermodynamics for such systems to explain such
phenomena as shear induced melting, shear dilation and the
change in internal energy. Moreover, their HSNEMD simulations
on the monattomic L-J fluid [99] produced results for the
shear rate dependent pressure and internal energy that obeyed

the following functional forms :-

3

P(¥) = P(0) + P,»2 (3.8.1)
3

= U(0) + U »2 (3.8.2)

u)

where P(@) and U(@) are the equilibrium pressure and internal

energy andiP1 and U, are state dependent constants. The

3
origin of the 32 dependence is the same theory which

predicts a iﬁ dependence for the shear viscosity [74].

To compare the changes induced in the systems studied

here and to test the validity of egns.3.8.1 and 3.8.2 the
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functions RAPGO(?S?ZjﬁO)), and;fAUUQSﬂKZZjﬂQLL;/are given in

table 3.15 and in figs.3.23 and 3.24 logyoAP(¥) and | 1ogmAU()")"

are plotted as a function of ]ogld?. From eqn§i3.8.17and
3.8.2 plotting these functiohéggggzies that a straight line
should be observed of slope 3/2. At the lower shear rates the
estimated errors in AP and AU are larger than the actual

values so only the highest three shear rate points are plotted

in figs.3.23 and 3.24.

135



Table 3.15 The functions AP(¥) and .AU(¥) , as defined in

the ‘text, obtained from the steady state shear calculations on

the;;i=l.0 and }E;ﬂ.GﬂSAngrsystems at T~260K and P~1GPa.

=18 S .
3/10%% 7 log, (#/10*%s™*) | APG)/bar  AU($)/3 mol
6.502  -0.299  -40+98 -40+68
B.754 ~3.123 40+100 20+60
1.247 0.096 ~10+100 20+60
2.49 .396 90+106  140+60
4.99 0.698 250+80 290+60
12.50 1.097 700+99 740+60
1*-g.608
#1007 108, (/10%7) ARG /bar  aUG)/3 mot™t
0.824  -p.084a  30+120 70+110
1.243 .95 60+110 80+110
5.0 .699 290+116  250+100
12.5 1.897 760+120  610+110
24.98 1.398 1620+100  1270+100

It can be seen from table 3.15 and the graphs that both
the energy and the pressure increase with shear rate as has
been found in all previous HSNEMD simulations. The latter of
these effects is also known as positive shear dilatancy and is
well documented for real systems [89] where it can be observed

in the more usual form as an increase in volume upon shearing.

In these simulations the fixed volume causes the pressure to
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Figure 3.23 Log, AP(¥) vs. log ¥ , 1%:1.0 (—a—)
and 1%¥=0.608 (- -00- -), T~260K, P~1GPa.
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rise instead.

For the limited amount of data available AP(y} and ' AU(Y)

show an apparent power dependence in ). However, the slope in
all cases is ~1.0 significantly lower than the 1.5 observed
for L-J argon [99]. The data was consequently fitted to the

forms

() = P10 THE T (3.8.3)

and

) = U, (5710%% )P

(3.8.4)
.

and reasonable results were obtained using the parameters

given in table 3.16.

Table 3.16 Best fit parameters for the data obtained for

the shear rate dependent pressure and energy to the forms

given in egns.3.8.3 and 3.8.4.

¥ Py/bar a U /3 ml ' b
1.0 35.2 1.18 51.2 1.06
0.608 50.1 1.08 48.1 1.03

As well as the slope there is also a close similarity in

the magnitudes of &P(¥) and AU(¥) for the \1‘_‘=1.ﬂ andﬁ]f’=ﬂ.6@8

Sggrsystems in the rather narrow range that can be compared.
The similarity in these static properties contrasts markedly
with the differences found between the systems for such

dynamic properties as the viscosity and the alignment.

137



As shown in table 3.8 the pressure increase that occurs
upon shearing is not uniformly distributed in the three

cartesian directions. To clarify this the set of functions

8P () = Py () - P() (3.8.5),

*=X,¥,2.

have been calculiféakaﬁa’gfgigiven in table 3.17.

Table 3.17 The functions Aﬂméy); as defined in the text,
(egqn.3.8.5), obtained from the steady state shear calculations

on theglf=1.@ andAlf=ﬂ.6ﬂ8 Cl, systems at T~260K and P~1GPa.

1*=1.0
510%™ P(3)/bar AP _ (¥)/bar APyy()"')/bar ap_ (¥)/bar
0.502 11320450  10+100  50+150  -70+80
0.754 11400+68  -10+120 50+120  -40+100
1.247 11350+76  -70+130 39+150 50+100
2.49  11450+76 -160+90 120+100 30+100
4.99  11610+48  -220+100 80+90 140+120
12.50 12060+58 -390+120  -10+70 460+110
1*¥=g.608
$/10*%7* P(¥)/bar 7€P§§(>")/bar &P, (7)/bar aP_ (7)bar
0.824 11340+70 50+110  -70+120  30+120
1.243 11370450  -30+110 30+90 16+110
5.6  11600+48 -170+15¢0  -10+146  180+110
12.5  12070+78  -420+138  -60+150  A80+140
24.98  12930+30  -730+80 750+60

-10+80

At the lower shear rates the error bars are once again

too large to determine any clear trend but at the higher shear
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rates it can be seen that. Pxx(i')(P()"), Pyy()")z P(¥) and

Pzz()")>P()") . These normal pressure effects are well known in

real systems and lead to a number of flow phenomena such as
the Weissenberg effect and extrudate swell [98]. As the
pressure is largely determined by the configuration of the
molecules changes induced in it by the shear are the
macroscopic manifestations of the underlying microscopic

structural rearrangements.

3.9 Shear Induced Structural Changes

In MD the structure of fluid systems are generally
characterised in terms of radial distribution functions
(rdf's). For a diatomic molecule the most readily accessible
are the site-site rdf, g(r), and the COM-COM rdf, G(R). At
equilibrium these functions adequately describe the structure
of a diatomic fluid because of its isotropic nature but under
shear the strucure becomes neccessarily directional dependent
so these rdf's tend to average out the structural changes.
This is particularly true for the site-site rdfs, which are
shown, along with the COM-COM rdfs, at a range of shear rates
in figs.3.25 to 3.26. For the shear rates studied here there
is no significant change in g(r) for either the7;f=l.ﬂ or the
1*=@.6@8 9}3. The peaks at r=1lc and 20 are those due to
nearest and next nearest neighbours in both cases but whereas
thev;t=0.668 has an intermediate peak at ~1.60, corresponding

to the second atom of a molecule whose other atom is in the
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Figure 3.25 The radial distribution functions (rdf)

for the COM, G(R), and the sites, g(r),

1*=0.608, (a) »=0.824x10'%s7",

1

“1 (c) »=25%x10'%s"%,

(b) »=1.25%10%s

T~260K, P~1GPa.
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As £ig.3.25 1%=1.0, (a) »=0.75%10'%"*,

Figure 3.26
(b) #=5%10%%"%, (c) ¥=12.5%10'%*.
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nearest neighbour shell, in thegl?=l.ﬂ case the bond length
also corresponds to the next nearest neighbour distance so

only one peak is observed.

For the COM rdf, G(R), noticeable changes do occﬁr, as
the shear rate is increased, in the nearest neighbour shell.
The peaks in G(R) at ~l1l.3c for;ji=ﬂ.668 and ~l.4c for;}t=l.@
and the first and second peaks in g(r) are consistent with
pairs of molecules forming a 'T' configuration. It appears
that this 'T' configuration becomes less preferred at higher
shear rates, as is shown by its decreasing height in both
systems, and is replaced by the parallel configuration which
gives rise to a peak at ~lo. This is particularly clearly
shown in the4;f=ﬂ.6ﬂ8 case where at the lowest shear rate
there is only a shoulder which develops into a peak at the
highest shear rate. These changes are consistent with the
observed increase in alignment and the increase in internal

energy which occurs as the lower energy 'T' configurations are

replaced by the higher energy parallel configurations.
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3.19 Conclusions

From these initial studies a number of significant points
have arisen concerning the methods implemented and the results
observed. Firstly, it is clear that as a technique for
elucidating the behaviour of fluids undergoing shear steady
state HSNEMD is particularly useful providing us with detailed
information at a molecular level regarding some well known
laboratory observed phenomena. It is less successful at
determining the zero shear rate viscosity as the degree of
shear thinning increases making extrapolations difficult.
Under favourable conditions, i.e. low density, it is still
more efficient at determining N(@) than either of the

alternative Green-Kubo or perturbation methods.

It has been further shown that the perturbation technique
is of very limited use. It does provide an alternative , if
more expensive, route to the stress response function, which
is a useful internal check, but neither it nor the EMD

Green-Kubo method can economically provide a value for n(d).

The results obtained for the diatomic fluids
qualitatively reaffirm those found previously for other
diatomic systems [60,7@0]. Shear thinning is found to be
common even for these 'simple' liquids although it remains3§95§9
explained satisfactorily by an actual molecular theory. Of

the available theories none can be said to be iwholly
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consistent with the available data. Observations of the
behaviour of the internal energy and the pressure under shear
confirm the previous findings [90] that in ‘'simple' liquids
the pressure and the energy increase with shear rate
apparently obeying a power law dependence in ¥ though, in the
cases studied here, not the 72% dependence of Kawasaki-Gunton
theory reported previously. The reorientation of molecules
that occurs under shear has been characterised by several
different functions all of which give results which are

consistent with a preferred alignment tending to be parallel

to the axis of shear.

These initial efforts to investigate the effects of
molecular anisotropy upon the rheological properties of fluids
have produced some interesting, if not totally conclusive,
results. Originally it was intended that by looking at two
similar molecules of different lengths it could be established
if a larger molecule was more or less viscous than a shorter
one. In real liquids it is impossible to do this important
experiment unambiguously as to study molecules of different
anisotropy inevitably means studying molecules which differ in
other respects also. However, because of the drastic effect
of the increased bond length on the equation of state, and the
known dependence of the viscosity thereupon, it is still not
possible to do the desired experiment completely unambiguously
even for these model liquids. Without any corresponding

states prescription comparisons were carried out at the same
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temperature and pressures. At a pressure close to atmospheric
the initially unexpected result was obtained that a diatomic
fluid comprising molecules offl¥=1:ﬂ was less viscous than one
comprised of molecules of ;f=9.6@8. This drew attention to
the importance of the density in relation to the viscosity.
This was further substantiated by comparing the same two
systems at an elevated pressure which revealed that their
pressure dependences of viscosity were not comparable but,
because of the differing compressibilities, their density
dependences of viscosity were vefy similar. At the higher
pressure it was also found that the two systems showed very
similar shear induced changes in the pressure and the internal
energy. This contrasted with the quite different n(¥)
behaviour which clearly showed the tendency for the more
anisotropic system to shear thin to a larger extent. It could
be that this difference in the degree of shear thinning could
be correlated in the same way as the zero shear rate viscosity
in that if the dependence of the degree of shear thinning was
known as a function of density then it would be interesting to
compare the respective coefficients for the two systems.
Putting aside the fact that at present there is no universally
accepted way of measuring the degree of shear thinning its
variation with density, at constant temperature, remains
largely unknown even for real systems. If such coefficients
could be evaluated and turned out to be very similar for the
molecules studied here it would suggest that the density was

the overriding factor in determining the shear thinning
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behaviour and not the anisotropy. One point to bear in mind
is that at the higher shear rates the viscosity tends to a
similar limit in each case. This suggests that the viscosity
is to some extent dependent on the profile that the molecules
present to the shear flow as this will, for the molecules used

here, become more similar as the molecules align parallel to

the axis of flow.

144



CHAPTER 4

ETHANE AND PROPANE RESULTS

4.1 Introduction

The method used so far, of changing the bond length of a
diatomic molecule, to investigate the effect of anisotropy on
the rheological properties of fluids has limited scope for
development. To broaden comparison with experiment it was
decided to study a series of molecules built up from different
numbers of equivalent interaction sites. It has previously
been shown by Ryckaert and Bellemans [123,124] that the
n-alkane fluids butane and decane can be adequately simulated
by representing CH, and CHz' groups as one equivalent
interaction site of equal mass, the n sites being held
together by rigid C-C bonds and C-C-C bond angles. As
hydrogen atoms were not specifically taken into account their
main effect of hindering internal rotations was modelled by
employing a dihedral angle potential. To prevent overlap
sites separated by three or more intervening ones interacted
through the same LJ 12-6 potential as used for the

intermolecular interactions.

It was thus proposed that a study be made of a series of
molecules resembling n-alkanes constructed in the fashion set
out by Ryckaert and Bellemans [123]. It was not intended at

the outset that any one of these model molecules would
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reproduce accurately any of the properties of its real
counterpart. To do this would involve much parameter fitting
for each molecule which would be costly and self-defeating in
that it would result in the loss of the basic similarity

between the molecules.

To make some general comparisons with the work already
done on diatomics it was decided the first two, non-spherical,
rigid members of the series be studied initially with a view
to extending the calculations to molecules with internal
flexibility at a later stage. These first two members are the
two centre model , or rigid diatomic, and three centre model,
or rigid triatomic, which correspond to 'ethane' and
'propane'. In the next chapter results will be given for a

six centre model incorporating internal degrees of freedom.

4.2 Ethane and Propane Models and Computational Details

To model 'propane' and 'ethane' the interaction
potential, bond lengths, bond angles and masses were those
used previously for n-alkanes [123]. The intermolecular
site-site interaction potential takes the familiar
Lennard-Jones 12-6 form with €/k=84K and 0=3.92R. The C-C
bond length was in all cases 1.53% and C-C-C bond angle was
fixed at the tetrahedral angle of 109 28' in propane. The

mass of all sites was set to 14.15134 g/mol.

1406



As ethane is modelled as a rigid diatomic the same
methods , and hence the same programs, were used as for
chlorine. For propane the addition of an extra site means
that a different algorithm has to be used to integrate the
equations of motion. In this case the method of quaternions
[40] was used to integrate the rotational equations of motion
using an algorithm due to Fincham [114], as described in
section 2.8. A program was then written incorporating this
algorithm to perform equilibrium molecular dynamics on a
system of rigid triatomic molecules. The program was tested
in the usual way on a sample of 108 propane molecules,
initially arranged on a crystal lattice, modelled using the
parameters given. In all the simulations reported here on
propane the potential was truncated at half the box length and
appropriate corrections were added to the virial and the
potential energy. The timestep used was 6.4*1q?t§; in all
cases unless stated otherwise. For ethane a sample of 256
molecules was used throughout and the potential cutoff and
timestep were as for the diatomics , namely 2.5c and

Olgfy[jjgrrespectively.
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4.3 Results at T~200K, P~@

To compare the two fluids equilibrium configurations were
generated at a temperature of 200K close to the zero pressure
isobar. The temperature chosen was fairly arbitrary but as it
was intended to look at a series of molecules it was
neccessary to use a temperature which would ensure that all
the liquids were in the fluid regime yet not be too low that
the relaxation times of the more‘complex fluids became too
much of a problem. 1In the case of propane the desired state
was achieved by interpolating and extrapolating from the
pressure obtained at various densities. For ethane the
constant pressure MD technique [120] was used to equilibrate a
sample, initially in a crystal configuration, by setting the
required pressure to zero and allowing the density to relax to
a constant value. The reduced number densities resulting from
these procedures were Pf=@.51846 and79f=ﬂ.5@ﬂ52 for ethane and
propane respectively. These densities were used in all

subsequent calculations.

Having obtained equilibrium configurations the
perturbation method was applied to determine the response of
each system to a shear flow. The procedure was the same as
that used on chlorine. Equilibrium trajectories were first
obtained for a period of @.8ps then the same initial
configuration was mechanically perturbed using a delta

function in shear rate with the trajectories then being
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followed for the same amount of time. The initial
configurations were thermalised at the start of each new
segment by rescaling the momenta. In each case a total of ten
segments were averaged together. The results for the

equilibrium properties are given in table 4.1.

Table 4.1 The equilibrium properties of ethane and

propane determined from the averages of ten runs of @.8ps at

T~200K.

o* U/Jmol ' @/3 mol™t T/K P/bar
Ethane @.51846 -5040+80 -9170+2@ 198.9+3.1 -30+40

Propane ©.50052 -14340+90 -19300+50 199.0+2.4 120+50

From the table it can be seen that the addition of an
extra interaction site effects the potential energy markedly.
As the number of interactions per molecular pair is equal to
nz, whereip” is the number of sites per molecule, then
empirically it would be expected that the ratio of the
potential energies would be of order 9:4 or 2.25:1. This
neglects the excluded volume effect from adding on the extra
site, and the resultant structural changes, and any
differences in number density. The actual ratio is ~2.1l:1
which is remarkably close. The explanation for this is that
with a bond length of 1.538% and ©=3.928, effectively 1¥=g.39,
there is a large amount of overlap in these molecules between
neighbouring sites so the increase in excluded volume going

from ethane to propane is small, compared to the case of the
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different bond length chlorine molecules. This effect must
also account for the small differences in the zero pressure

densities.

In figs.4.1—4.5 the equilibrium radial distribution
functions are shown. In the case of ethane the COM G(R) and
the site-site g(r) are given. For propane the site-site g(r)
has been resolved into three components gAA’ 8pp and 77ng3 where
A denotes an end site and B denotes a cenL;aiigife. In ethane
the short bond length, @.398, results in a broad first peak in
g(r) extending from r~l.@c, the nearest neighbour separation,
to 1.40 which covers the range of possible values for r of the
second atom of a molecule whose first atom is in the nearest
neighbour shell. In chlorine this first peak was split
indicating preferred orientations of molecules at close
quarters. In ethane the shorter bond length and also the
different conditions appear to result in no preferred
alignment. This is also indicated by the G(R) which peaks at
~l.20 the mid-point of the range 1.0c to l1l.4c which
corresponds to the minimum and maximum separation of the
centres of mass of two molecules which have site-site

interaction distances of lo.

In propane the overall site-site g(r) is very similar to
that of ethane with peaks at r=1.2c and r~2.30 of heights ~1.4
and ~1.1 respectively. The resolution of g(r) into three

components reveals that contributions to the first peak are
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Figure 4.1 The radial distribution functions (rdf) for

the COM, G(R), and the sites, g(r),

ethane, T~200K.
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Figure 4.2 The site-site rdf, g(r), propane, T~200K.
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Figure 4.3 The end site-end site rdf, gAA(r), propane
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Figure 4.4 The end site-centre site rdf, gAB(r),
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Figure 4.5 The centre site—-centre site rdf,gBB(r),

propane.
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not the same from the various interactions. As there are four
end-end interactions, type AA, and four end-centre
interactions, type AB, and only one centre-centre interaction,

type BB, per molecular pair

g(r) = (4g,,(r) + gpp(r) + 4g,,(r))/9. (4.3.1)

As can be seen from figs.4.3 and 4.4 gar and g8 differ in the
region of the first peak, gAA(r) has a maximum at r~l.loc

whereas gAB(r) peaks at 1.30. This is a reasonable result

because the iarge amount of overlap of the sites in a molecule
means that the central site is 'shielded' from the sites of
other molecules by the end atoms which are conversely more
exposed. This is also shown by‘ignB(r) which is qualitatively
similar to g,p(r) but has higher peaig and lower troughs

indicating more order in the structure of central sites.

During the course of these equilibrium runs the mean
squared displacements of the centres of mass were calculated

and from these the diffusion coefficients were estimated to be

(9.711.(5)*10_9m2:=:_'1 - and (3.61@.4)*10—911.128:1/ fof ethane and

propane respectively. Clearly the indication from this result
is that, as the viscosity is generally considered to be
inversely proportional to the diffusion coefficient, the added

interaction centre will, as expected, increase the viscosity.

From the perturbation experiments the stress responses
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were obtained and the off-diagonal components are shown , in
their integrated form, in figs.4.6 and 4.7 for ethane and

propane respectively. The significant components, ‘N%m(t),

were fitted to the form

fgxz(t)
Ay

= n(1 - exp(-t/T)) : (4.3.2)

. where Ay was the perturbation in shear rate and was equal to
—1 P .
1258~ in both cases. The constants from these best fits, n,

T and Ge=N/T' , are given in table 4.2.

Table 4.2 The best fit parameters for onéﬁﬂ/A?v fitted

to the form given in egn.4.3.2 for the results obtained from

10 perturbation runs of length @.8ps on ethane and propane

T~200K.
n/mPa s _T/ps ‘;Eg/Gfa
ethane 2.908 g.11 g.74
propane 2.38 g.22 1.71

As before the noise that begins to affect the response ,
at ~0.4ps and beyond, makes the estimation of the viscosity
from the curves themselves subject to large errors. The
viscosities are accordingly quoted as 0.07+0.02mPa s and
@.32+0.06mPa s for ethane and propane respectively. These
viscosities differ from those quoted in table 4.2. for which
the viscosities and relaxation times have been treated as

adjustable parameters to optimise the fit to a single
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Figure 4.6 Aoap(t) vs. t, ethane, T~200K.

Estimates of Acxz(qo (=n(0)Ay) are from
the fits of the non-equilibrium data to
the theories of Kawasaki-Gunton (- - - =)

and RE and Hess (—-—--).

0.012 } XZ§

0.010

e - . . e - e - e = e en e — - - emmamen  — — -

0.008
—XP 7 0.006
Pa 0.0

‘o.ooz

0.000 ; Lt

-0.002 | - t/At XV\y

Figure 4.7 As fig.4.6 propane, T~200K.

0.05
0.04
0.03

0.02

Pa oo |
0.00 Yo - P 4

ol 20 50 40 —B0__100~420— 140 160 180 200
t /At

-0.02 } XY

-~

O
(&)
T




exponential. In fact these cannot be varied independently as
their ratio, n/T=Ge, ', is fixed by the initial slope. As can
be seen from fI;;.éTB and 4.9 the single exponential is not a
particular good fit to either response. It is significant,
however, that the viscosity is substantially higher, Gg is

larger and the relaxation time, T, is longer for propane than

for ethane.

In the case of propane the stress evaluated from the
equilibrium runs was used to obtain the correlation function,
Cs(tﬁxoaﬁﬂnoaﬁﬁn>} , averages being taken over all three
rggg;digédggigégggénents. The correlation function and its
integrand are shown in a normalised form in fig.4.1@. The
infinite frequency shear modulus, G, evaluated from the mean

squared stress, | G,==V<q;BﬂD>/kT , was 1.74GPa which compares

well with that c;léulégéégfgaﬁf£he perturbation result. 1In
theory the curves shown in figs.4.7 and 4.10, the integrated
correlation function and the integrated response to a delta
function, should be equivalent. The viscosity estimated from
the integrand of the correlation function,

n(t) = Ce(t’) at’ ,

‘\Ohﬁﬁ'

;‘X"<
[ -3

in the same time range as that estimated from the perturbation
result, is ©0.15+0.03mPa s. This does not compare well with
the previous result of n=¢.32+0.06mPa s but in view of the

known number dependence [77] of the viscosity evaluated from

153



Figure 4.8

014
. 012
. 010
. 008

>
Q

(t)

006
. 004
. 002
/000

U
o)

O O O O O O O O

- Figure 4.9

0.02

0.01

0.00

0

Fit of onz(t) to single a exponential

(- - =), ethane.

20 80 100

50 60
t/At

Fit of Acxz(t) to a single exponential

(—+—), propane.

20 40 60 80 100 120 140 160 180 200

t/At




Figure 4.10 The nor-alized stress correlation function

é,(t) ve. t and its integrand, propane.
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the correlation function approach this disparity is not

unexpected.

As for the diatomics the response of the collective
orientation tensor, D, to a perturbation in shear rate was

also followed.

As ethane is modelled as a diatomic the response of the
off-diagonal components, shown in their integrated form in
fig.4.11, are qualitatively and quantitatively very similar to

those found for the chlorine systems at Tw260K, P&b.

Unlike ethane propane has three distinct axes of symmetry
which are termedzgg,gB and Zpé?nd are illustrated in
fig.4.12. These axes ensure_;kat the moment of inertia tensor
is diagonal and are used in the quaternion algorithm to
specify the position of the constituent atoms relative to the
COM, as in these body fixed axes the coordinates of the atoms

remain the same. It is thus possible to specify three

different collective orientation tensors of the form

N -
D" = %‘r 2 Zp%p for o=X,Y,Zz (4.3.3)

and in turn observe their response, Aga(t), to a perturbation.

It must be noted that these three tensors are not independent

as at all times the following expression must be true
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Figure 4.11

AD«B(t) vs. t, ethane.
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Figure 4.12 The principal axis vectors in the propane

model.




Figure.4.13
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The off-diagonal components of the Aga(t) are shown in

fig.4.13.

For the Aniﬁﬁﬂ it is not clear whether there is any
response at all. VAnizUﬂ. changes slightly initially but it is

likely that the changes occuring beyond ~10@At are due to

Y

noise. For the second axis, ip, ap_ (t) shows a similar

change as the long axis of a diatomic. This is understandable
as ib is effectively the long axis of the molecule. 1In

contrast AD}Z(z(t) shows a negative change indicating alignment

in the -ve ;ﬁadrant of the plane of shear. Clearly if one of
the principal axes is realigning in the shear plane then it
follows that at least one of the other axes must also be
changing. What is interesting is that it is mainly Zp which
is realigning which indicates that the preferred orientation
of the plane of the molecule is perpendicular to the plane of

shear. Of the two axes, gp

and Zp' XP is the 'longer' so it
might be expected that it would align in the XZ plane to
minimise the profile the molecule presents to the direction of

shear flow. These results suggest this is not the case.
As for the diatomics steady state homogeneous shear

simulations were performed at a number of shear rates and the

main results are given in tables 4.3, 4.4 and 4.5.
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Table 4.3 The mean thermodynamic properties obtained from

steady state shear calculations on the ethane and propane

systems at T~200K.

Ethane

L)
$/10'°™" U/ mol™* /5 mo1™t

12.5 -4970+10
25.0 -4970+10
50.0 -4880+20

100.0 -4720+10
Propane
$/10%"  U/5 w1t
19.9 -14270+20
15.0 -14240+20
25.0 -14140+10
50.0 -13890+30

100 .0 -13200+50

~9130+10
-9130+10
~9060+10

-8910+10

-19260+20
-19230+20
-19140+10
-18930+30

-18300+40

_¢/Imol”t

T/K

2gﬂ.lig.l
200.1+0.1
201.2+0.3

201.7+0.1

T/K

200.1+0.1
200.2+0.1
200.4+0.2
202.4+0.1

204.5+0.1
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P/bar

6+8
13+7
64+6

214+4

P/bar

158+27
184+18
291+7

513+36

1061+43

Length
of run

/ps
72
88
48

24

Length
of run

/ps
128
136
49
56

64



Table 4.4 The mean shear stress, resultant shear rate
dependent viscosity and mean normal pressure components from
the steady state calculations on ethane and propane at T~2@00K.

Ethane

10 —1 ;
Afiglgfglgggg/bar n(¥)./mPa s Pxx/bar Pyy/bar Mggz/bar

12.5 9549  0.076+0.007 f‘/3119 - 8+11 6+10
25.0 194+4  9.078+0.002 11+11 2+10 28+12
50.0 366+9  ©.073+0.0902 95+12 19+13 78+13
100.9 646+5 0.065+0.001  261+7 114+8 271+10
Propane

4?7101?5:1; xz/bar " n(¥)/mPa s Afgx/bar ﬁgiy/bar 1g§E/bar
10.9 1269+33 0.269+0.033  146+36 146+45 158+34
15.9 373+25 ©.249+0.017  172+34 169+31 212+36
25.9 570+10 ©.228+0.004  3@3+39 227+19 341+15
50.0 979+29 ©.196+0.006  636+26 286+60 616+57
100.9 1593+38 ©.159+0.004 1033+43 808+59  1342+69
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Table 4.5 The mean significant components of the

alignment tensor obtained from the

calculations on ethane and propane

Ethane
3/10"%" D,
12.5 0.012+0.003
25.0  0.024+0.002
5¢.0 90.043+0.001
100.0 ©.068+0.001
Propane
X-axis
L L
10.0 -0.013+0.006
15.0 -0.017+0.004
25.0 -@.024+0.005
50.0 -0.025+0.004
100.0 -0.026+0.005
Y-axis
RZ: Unc Nl
10.0  9.056+0.007
15.8  ©.971+0.006
25.0  ©.105+0.005
50.0  ©.140+0.007
100.0  0.150+0.006

P;x_l/3
2.002+0.003
0.002+0.003
0.007+0.003

0.018+0.001

P§§f1/3
-0.002+0.004
-0.094+0.004
-0.016+0.007
-0.028+0.095

-0.048+0.003

Dy 1/3
0.004+0.006
0.010+0.007
0.030+0.010
0.046+0.009

0.078+9.007
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steady state shear

at T~200K.

p_-1/3
vy /
-0.003+0 . 004
~0.000+0 . 004
-0.006+0.003

-0.012+0.002

Dyy ~1/3

ﬂ.ﬂﬁ3i@.ﬂ@5
0.008+0.005
ﬂ.ﬂlSiﬂ.ﬂﬂG
ﬂ.ﬂ3liﬁ.ﬂ@5

0.048+0.004

Dyy=1/3

~0.004+0.011
-0.011+0.009
-0.014+0.008
-0.014+0.006

-90.033+0.008

?52—1/3
0.001+0.002
-0.001+0.093
-0.001+0.004

-0.096+0.092

D,, ~1/3
-0.001+0.005
-0.004+0 .005

0.001+0.003
-0.002+0.005

0.000+0.003

D,,~1/3

—0;50110.0z8
0.000+0 . 008
~0.016+0.004
-0.032+0.006

-0.045+0.007



Z+-axis

$/10'%™* »p

190.9

15.9

25.0

50.90

10@.0

xz'
-0.043+0.005

-0.081+0 .006
~3.115+0.004

-0.124+0 .004

D ~1/3
~0.002+8.005
~3.006+0.005
~3.014+0.004
~3.017+0.007

-0.029+0.096

Pyy 13
ﬂ.ﬂﬂ@iﬂ.ﬂﬂ7
ﬂ.ﬂﬂzi@.ﬁﬁ6

~3.001+0.005
—@.ﬁl7iﬂ.@ﬂ7

-0.015+0.006

4.4 The Shear Rate Dependence of the Viscosity

The shear
figs.4.
order as those
This indicates
systems at
propane is
also shear
noticeably

rate, 10%%s

14 as a

the

~1

rate dependent viscosities,

)%

function of ¥ ,

state points used.

thins to a larger extent.

D, -1/3
0.002+0.006
0.004+0.006
0.016+0.005
0.034+0.005

0.944+0.006

plotted in
obtained are of the same
estimated from the perturbation technique.

that the stress relaxes rapidly in these two

It is also clear that

at least three times more viscous than ethane and
Indeed ethane only
shows non-linear behaviour at the highest shear

. The n(¥). data has again been fitted to the

three functional forms predicted by the theories of

Ree-Eyring(RE), Hess and Kawasaki-Gunton (KG) as described in

section 3.5.

The best fit parameters and root mean square

differences are given in table 4.6 and the curves are shown in

figs.4.

15 and 4.16.
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Figure 4.14

n(y) vs. )"”, ethane ([J) and propane (A4).
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Figure 4.15 n(y) vs. 7”, ethane (A). Fit to the

predictions of the theories of Hess (—),
Ree-Eyring (- - -) and Kawasaki-Gunton
(——=).
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Figure 4.16 As fig 4.15 for propane.
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Table 4.6 The best fit parameters and root mean square
differences (RMSD) for various predicted n(¥) dependences for

ethane and propane at T~200K.

Ethane Propane
Hess n(@)/mPa s 0.877 g.267
Th/ps g.693 2.307
k J.600 3.482
RMSD/mPa s 2.001 2.005
KG  n(@)/mPa s  ©.085 ¢.311
' 3
A/10 °wPa 82 = ©.192 1.562
RMSD/mPa s 2.002 @.005
RE Aﬂ(ﬂ)/mPa s 3.977 g.260
Tr/ps 1.115 3.241
RMSD/mPa s 2.001 2.009

For ethane the lack of shear thinning means that all the
forms give reasonable fits and the zero shear rate viscosity
can be quoted, with some confidence, as N(¢)=0.081+0.004mPa s
compared to the rather uncertain value of n(0)=0.07+0.02mPa s
obtained from the perturbation experiments. Propane shows
significant shear thinning and consequentially a notable
difference in the estimates for n(¥). The RE and Hess curves

give n(@)'s in the range 0.26—@.27mPa s, the KG fit gives a
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higher n(@¥) of ~@.31lmPa s. These also compare well with the
estimation from the perturbation method of n(d)=0.32+@.06mPa s
although an n(¥) of @.26mPa s would imply that there is no
-long time relaxation in the stress response function as it

means that the plateau value, onz(co) = n(0)A¥ , in the

perturbation experiment should be ~@.0325Pa which corresponds
to the apparent plateau reached by'lmﬂ&(t) in ~@.2ps, see
fig.4.7. As for chlorine none of tﬂgggagétional forms does
outstandingly well at predicting the shape of the Igzzvsﬁgi
curve in that there appears to be a systematic, rather than
random, deviation of the data points from all the curves. In

terms of the root mean square differences the KG and Hess fits

are statistically better than the RE fit.

The apparent underestimation of the viscosity by the RE
and Hess functions is probably a result of the range of shear
rates used. Further data at lower shear rates would probably
bring all three estimates for n(®) closer but as lowering the
shear rate inevitably causes more uncertainty in the results

for n(¥) it was not considered profitable to obtain this

information.
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4.5 Shear Induced Alignment

As ethane is modelled as a diatomic it is not surprising
that qualitatively the behaviour of the orientation tensor
under shear is the same as for chlorine. The magnitude 1is
somewhat less reflecting the effect of the shorter bond length
and the lower density. The values of the shear orientation

parameter, X,(¥) =D_ (¥)/¥, are given together with those for
d Xz

propane in tab1e74.7.

Table 4.7 The shear orientation parameters determined

from the steady state shear calculations on ethane and propane

at T~200K.

Ethane

/10'%" X (%) /ps

12.5 Q:E;éiﬂ.ﬁzz

25.9 3.094+0.007

50.9 2.086+0.002
1bﬂ.ﬁ 0.068+0.001

Propane

X-axis Y-axis Z-axis

/101%"  x,(%) /ps x4(») /ps X4() /ps
19.9 -8.131+0.056 djg;;iﬂ.ﬂ73 -0.427+0.047
15.9 -9.115+0.023 3.474+0.039 -0.358+0.031
25.0 -0.096+0.020 0.418+0.018 -0.323+0.024
50.9 -0.951+0.009 0.280+0.013 -0.230+0.008
100.0 -9.026+0.005 @.150+0.006 -0.124+0.004
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xd(?) is plotted in fig.4.17 as a function of ?” and a

linear extrapolation to ¥=@ gives a value for Xa(ﬂ) of
~@.1llps. Multiplying Xd(ﬂ) by the magnitude of the shear rate
(7}?§§t{) used in the perturbation experiments gives as an

estimate for the plateau value of szﬁﬂ , 1.e. szhﬂ , of

10

~@.138%10 ~~ ' which compares well with the highest value

obtained by D_ (t) of ~#.12*10"'® which indicates that the for
ethane the orientation relaxes within the duration of the

perturbation experiment.

For propane the results from the perturbation runs are
confirmed by the steady state values of the alignment tensors.
The ip axis is found to behave in the same way as the long

axis of a diatomic in that upon shearing Dzz and sz‘increase

in magnitude whereas Dzy and Dzz decrease showing a tendency

for alignment to occurrin the positive quadrant of the XZ
plane. Through the interdependence of the three tensors,
eqn.4.3.4, counterbalancing changes must occur in the other
orientation tensors. The perturbation results suggested that
the majority of the change would occur for the Zp axis and

Z

Xz

decreases more than, by up to five times at the highest shear

this is indeed what the steady state results show as D

X . Z o/
rate, sz. Correspondingly Pxxidecreases and Dzz increases

emphasising the tendency for the Zp axis to align in the

negative XZ quadrant. Furthermore‘D‘;z'y shows, at the higher

shear rates, a slight negative trend which, as for the

~

diatomics and the p axis, accompénies the realignment of the
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Figure 4.17
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axis in the plane of shear.

The general picture that emerges for liquid propane is
that the molecules tend to align with the plane of the

molecule perpendicular to the plane of shear. This simple

X

picture is complicated by the fact that sz

does change, which
would not occur if the proposed alignmengrgere exactly true.
Why the molecules should align in this way rather than with
the plane of shear is not clear. One possible explanation is
that it is a consequence of the molecules forming into layers
in the XY plane to assist easier flow. This is thought to

happen in monatomic fluids [1,2] but is difficult to quantify

as it is a collective dynamic property.

The shear orientation parameters for each of the tensors
are given in table 4.7. and are shown in fig.4.18 plotted as
a function of 4?#7. Estimates of the Xd(@) were made using a
linear fit to the lowest four shear rates and the following
results were obtained -0.2ps, @.75ps and -@.56ps for XP' ib.
and Zp respectively. Unlike ethane these estimates of'xa(@)

give values for the long time limit of Asz(t), in the

perturbation experiments, of at least three times in excess of
the highest value of Ankét) attained within the time span of
the experiment. This ;gién interesting result as estimates of
the zero shear rate viscosity tended to suggest that the shear
stress relaxation was complete within this same time interval.

Now as the response of the collective orientation to a change
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in the shear rate is a measure of the rate at which the
configuration comes to equilibrium after such a perturbation
it follows that the stress, as it is largely a function of the
configuration, must also take at least the same amount of time
to come to equilibrium. What this result implies is that the
long time relaxation of the stress contributes very little to

the eventual resultant viscosity.

4.6 Non-equilibrium thermodynamics

From table 4.3. it is clear that both the energy and the
pressure are again functions of the shear rate. To correlate
this behaviour the same procedure has been adopted as for the
diatomics. 1In table 4.8. the functions AP(y¥) and f@@@, as
defined in sec.3.8, are given and in figsjgjié and 4.20
logmAP()"z and logmAU()"): are plotted against logm)". At the
lower shear rates the data suffers through the imprecision in
the results and the small differences between the pressure and
the energy in the sheared and unsheared states. At the higher
shear rates the difference increases so the uncertainty in the
results becomes less. For this reason only the highest three
shear rates have been considered in fitting the data to the
forms given in eqns.3.8.3 and 3.8.4. From figs.4.19 and 4.20
it can be seen that for these higher shear rates the data
gives a good fit to the linear forms of these equations. The
resultant best fit slopes (a and b) and constants (Py and U;)

are given in table 4.9.
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Table 4.8 The functions AP(¥) and AU(Y) obtained from the

steady state shear calculations on ethane and propane at

T~200K.

Ethane

9/10'%8"  log, (37/10'%7")  AP(F)ber  AUG)/I mol
12.5  1.g97 33436 66+82

25.0 1.398 39+36 74+82

50.0 1.699 89+36 163+83
100.0 2.0 240+35 321+82
Propane |

$/10'%" 10g (7/10'°%7")  aP(»)/bar AU($)/3 mol *
16.9 10 31455 72490

15.0 1.176 65+51 106+89

25.0 1.398 171448 196+88

50.0 1.699 393+59 454+91
100.2 2.0 942+64 1140+100

Table 4.9 The best fit parameters to the forms given in

eqns.3.8.3 and 3.8.4 for the data obtained for AP(¥) and =~AU(7'~)R

from the steady state calculations on ethane and propane at

T~200K.
Py/bar a Uy /jmol b
Ethane g.49 1.35 2.89 1.83
Propane 3.34 1.23 3.08 1.29

In comparison to the chlorine results the dependence on

the shear rate of the pressure and the energy is found to be
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Figure 4.19 Log, ,AP(¥) vs. log, ¥, ethane (- - O - -)

and propane (—aA8—).
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1.2

~y -*56:1, which is closer to the predicted dependence of

yg‘ [90], except in the case of the energy in the ethane
system. For ethane the energy is found to vary approximately
asg? which is similar to that found in chlorine but
anomalous in the context of the other three dependences shown
in figs.4.19 and 4.20. There is a grgater difference between
the chlorine and the alkane systems for the constants ,Ul'and
??, of at least an order of magnitude. This is understandable
given the large difference in the conditions and the models
used. There is also a significant difference between ethane
and propane in the magnitude of AP(¥} and AU()")i with propane
showing the larger change in both cases. It is not obvious
why this should be the case since in chapter 3 it was shown
that two diatomics with the same interaction site potential
and at the same state point but with differing anisotropies
showed very similar changes in the pressure and energy under
shearing. Here we have two molecules made up of two and three
identical sites at roughly the same state point which show a
noticeable difference in the magnitude of the effects. It has
already been noted that these two molecules differ in their
equilibrium potential energies by a factor of ~2 which is
largely a result of the extra interactions involved in a three
site as compared to a two site molecule. This means that the
average potential between two molecules has a deeper well in
the case of propane and thus any similar change in the
structure of the fluid caused by the shear flow will cause a

larger change in the potential energy and also in its first
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derivative, which at constant temperature effectively

determines the change in pressure, than in ethane.

A further resolution of the shear induced pressure
changes is given by the three normal pressure components.

Their change relative to P(¥) are given by the functions

&P (¥) , as defined in eqn.3.8.5, and are shown for ethane and

propane in table 4.14.

Table 4.18 The functions Aﬂmxyy‘as determined from the

steady state calculations on ethane and propane at T~2@0K.

Ethane

910%™ ap ()/bar  aR(7)/bar  ap_(#)/bar

e
i SRS

12.5 -3+20 2+14 2+13
25.0 -2+13 -11+12 15+14
50.0 32+18 -45+18 15+14

100.0 47+8 -100+9 56+11

Propane

10 -1 y : ' 3
¥/107s fpxx(l)/bar APYX(Z)/bar : Aflg(x)/bar
1.9 -3+45 —4+52 8+43
15.9 -12+38 -15+36 27+40
25.0 13+40 -63+20 51+17
50.0 124+44 -227+70 183+68
100.9 -28+55 -253+53 281+56

There is a clear trend in both ethane and propane for

gnxy) to decrease relative to P(¥) as the shear rate is
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increased and for P (7) to increase relative to P(Y)

QP (7» shows 1ess certaln behaviour. In ethane 1t appears to

increase like AP (7) whereas in propane AP (?) is small at

the lower three shear rates, becomes s;gnlflcantly positive at

. but then decreases at the highest shear rate,

1]

"1

5*10 s
}g This general behaviour of Pxx()")>¢P()") and

i~
‘Il

P_(»)<P(¥) - differs from that found for the diatomics where

32

P (7)(?()’) and Pyy(?)fi(z"z' . It is not possible to make any
flrm conclusionsngéﬁéo why this might be so because of the
large disparity in the state points used but as ethane itself
is modelled as a pseudo-diatomic it is unlikely that the
difference in the behaviour of the normal pressures is due to
the way in which the molecules are modelled. It is likely
that simulations performed on ethane and propane at conditions

comparable to those used in the chlorine system would produce

similar trends for the normal pressures.

4.7 shear Induced Structural Changes

The changes in fluid structure which give rise to the
increased energy and pressure have been monitored by
calculating radial distribution functions. For ethane the
only noticeable differences between the r.d.fs at equilibrium

and at a shear rate of Jgffg:{

are a slight movement of the
first peak of the site-site g(r) to a lower r value and an

increase in the height of the COM-COM G(R) from ~1.9 to ~2.1.
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These findings are consistent with an increase in energy and
pressure, as the sites penetrate further into the repulsive
part of the potential , and with the alignment that occurs

under shear producing more structure in the COM G(R).

For propane the g(r)s from simulations at the highest
shear rate, 19?%{?', have been superimposed over the
equilibrium g(r)s in fig.4.21—4.24. The largest change
occurs in gBBOO but as this only contributes 1/9 to g(r) its
effect upogﬂézr) is small. ‘The general trend for g(r) and its

resolved parts , ;.gM(r)', ’gAB(-r) -and ‘gBB(r) , is the same with

the first peak becoming larger, the first trough becoming
shallower and a consequent decrease in the height of the
second peak. As already noted the one extra site in the
propane model makes interpretation of the r.d.fs difficult.
The behaviour of the overall g(r) is similar to the cases of
ethane and the diatomics but as the COM G(R) has not been
calculated the ordering of the molecules cannot be discerned
in the same way as before. Qualitatively it might be expected
that gBBOﬂ resembles G(R) as the separation of the central
site aéam;he COM is only ©.150. Assuming this is so propane
shows similar behaviour as the diatomics with the greater

changes being more apparent for the COM structure.
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Figure 4.21 g(r) vs. r, propane ?=10‘zs

Figure 4.22 gAA(r) vs. r, propane 7=10123
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. Figure 4.23 gAB(r) vs. r, propane 7=10‘zl—‘ (—),
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Figure 4.24 g, (r) vs. r, propane ¥=10'%s
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4.8 Conclusions

Clearly the addition of an extra site to the diatomic
model produces quite drastic changes in virtually all the
properties measured. This can be rationalised as being caused
by an effective halving of the reduced temperature on going
from ethane to propane as the interaction potential energy
more than doubles. So to evaluate the effect of the change in
the geometry between a diatomic and a triatomic it would
probably be better to compare propane at 2@0@K with ethane
~1@9K. This again raises the problem of corresponding states
if one is trying to answer questions about the relative
rheological properties of molecules of different 'shape’.
However, in a crude, but probably more realistic, way
molecules can be said to vary not because of their different
shapes so much but because the numbers and/or intensities of
their constituent 'sites' are different. The comparison

between 'ethane' and 'propane' is a particularly dramatic

example of this.
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CHAPTER 5

HEXANE AND FLEXANE : EQUILIBRIUM RESULTS AT 200K

5.1 Introduction

Up to now the simulations reported here have been limited
to entirely rigid molecules. Although interesting results
have been obtained it has proved difficult to perform the
totally unambiguous experiments desired because of the problem
of finding corresponding states. Even though systems have
been looked at with differing bond lengths and numbers of
interaction centres it has not been possible to prove that,
for instance, larger molecules are inherently more viscous,
say, than smaller ones because of the arbitrariness in
choosing the conditions at which to make the comparisons.
Studying molecules which possess internal degrees of freedom
has the advantages of allowing much closer comparisons between
molecules to be carried out, as the changes induced in the
state functions by altering the barriers to internal rotations
are likely to be small, and it also means that a property of
particular relevance, i.e. flexibility, is being probed as it

exists in all real liquid lubricant molecules.

It was, thus, proposed that two similar model molecules
be studied, using molecular dynamics, differing only in their
'flexibility'. In this way it was hoped that an unbiased view
of the effect of hindered internal rotation upon the

rheological properties of a fluid might be obtained which

172



although not directly relatable to any one particular molecule
might give some insight into the comparative behaviour of

different molecules. The six centre n-alkane model was chosen
as a compromise, being a molecule of sufficient complexity for
which it would be possible to simulate a representative sample

for long enough times within the limitations of computer

resources.

5.2 Details of the Models

MODEL 1 : HEXANE

As described in sec.4.2 the model of a n-alkane
originally used by Ryckaert and Bellemans [123] has been
adopted. N-hexane is modelled as six centres of equal mass
(14.5134 gmol ') which represent the ‘CH, and CH, groups.
Carbon-Cé;ggggbond lengths are rigidI;ifixeéggt 1.538 and ccc
bond angles at 199° 28' . Each centre is the site of a
Lennard-Jones 12-6 potential with parameters & = 3.9228 and
EZE= 84K which determines intermolecular interactions between
sites of different molecules and intramolecular interactions
between sites separated by three or more centres within a

molecule. Furthermore, a dihedral angle potential , ®(«),

defined as
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Figure 5.1

The dihedral angle potential

®(x) vs. &, Hexane, T=200K.
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®(c)/k = (1.116 + 1.462cosx — 1.578cos>x — 0.368cos x + 3.156c0s o |

- 3.788cos’x)/10°K (5.2.1)

is used to restrict the rotation around all three dihedral
angles per molecule. ¢(«) is illustrated in fig.5.1 and the
method used to evaluate the forces on the sites’ due to !KEX is

given in Appendix 2.

MODEL 2 : FLEXANE

Is as model 1 in all respects except that forces arising
from the dihedral angle potential, &(x), are set to zero.
This is equivalent to setting &®(«) = @ but it was found useful
to accumulate ®(x) as in egn.5.2.1 to provide information on
the changes in distribution of dihedral angles. As this is a
more flexible form of hexane it is called FLEXANE for

convenience.

5.3 Details of the Simulations

All simulations were performed with N=108 molecules in a
cubic cell at temperatures of 200K and 3@00K. The equations of
motion were solved using the 'leapfrog' form of the Verlet
algorithm in conjunction with the 'constraints' scheme as
described in sec.2.9. The time step used was of length
Qiffgiffs and the constraints of fixed bond lengths and bond

angles were maintained to a tolerance of‘lo—s for most of the
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simulations. The number of iterations required to satisfy
these constraints per molecule per time step was ~18 for
hexane and ~12 for flexane at 200K. For each time step a
vectorised version of the program required ~@.6s of CPU time
on a Cray-1 machine whereas the scalar program required ~1.6s
of CPU time on a CDC-760@0. The latter used a method of
nearest neighbour tables to reduce the amount of time needed

to evaluate the forces (see Appendix 3).

It was subsequently found that the modifications to the
constraints procedure outlined in sec.2.1@ meant that the
tolerance could be reduced torlgiﬁ‘without seriously affecting
the amount of CPU time required per time step. The number of
iterations required per molecule per time step to satisfy the
higher tolerance increased to ~33 for hexane and ~27 for
flexane at the same temperatﬁre as before. Although the
number of iterations has roughly doubled there is no

significant increase in the CPU time consumed because the

modified procedure requires no SQRT functions to be evaluated.

It was intended that in all calculations the L-J 12-6
potential be truncated at ro=2.50 and long range corrections
were added to the energy and the virial assuming this and that
the site-site g(r)=1 for 'r>r, ; However, having completed all
the simulations it was subsequently discovered that in
employing a cut-off the square of the separation of two

interacting sites had been compared erroneously with rg
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instead of rz . As distances were measured in box units, i.e.
all coordinates lie between -1 and +1, the difference between
r¢ and ?;, in these units was small but effectively meant that
the cut-off used was in fact 2.924c. This meant that the
pressure and energy as calculated were in error by a small but
constant amount which has had to be corrected for. This is
not a serious problem as the conditions chosen at which to
compare the two models were largely arbitrary but as the
results.for the smaller alkanes were obtained at the state
point (T~200K, P~@) this point was initially chosen for these
calculations. Therefore, in the process of equilibrating a
sample of flexane at the desired temperature the volume was
adjusted to give an apparent pressure of ~@. With the
discovery of the error in the cut-off the actual pressure is

somewhat away from zero.

The method of preparation of equilibrated configurations
of hexane and flexane was to allow an initially cubic lattice
of all Trans , i.e «=@, conformers of flexane to equilibrate
at 200K for ~50ps. 1In the absence of a dihedral angle
potential rotations around the dihedral angle were rapid and
the sample quickly established an equilibrium state.To produce
a sample of hexane the dihedral potential was then gradually
introduced and the system then allowed a further 7@ps to
relax.As can be seen from fig.5.1 the barriers to transitions
are high compared to kT (T=200K) indeed no G4»G- transitions

were observed and the frequency of G-T transitions was only ~1
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per ps for 108 molecules, which implies a mean time between
transitions for one dihedral angle in excess of 10@ps. This
means we cannot be certain then that the distribution of

conformers in hexane has completely reached equilibrium.

5.4 Results at 200K

Having obtained configurations for hexane and flexane
further simulations were performed at equilibrium and at shear
rates in the rangegmjgfgfyggigi?w + the results of the latter
will be given in the next chapter. In all these simulations
the reduced number density, pf, was fixed at ©.33749. As the
HSNEMD calculations are carried out isothermally the
equilibrium simulations were performed using the same
procedure for maintaining constant temperature (see sec.2.15)
so as to obtain the best comparisons between the results at
equilibrium and under shear. To check the stability of the
numerical integration scheme and to allow comparisons with the
constant temperature simulations results were also obtained at

constant energy.
In table 5.1 a comparison is given between the

thermodynamic data obtained for hexane and flexane from

simulations at both constant temperature and constant energy.
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Table 5.1 The mean thermodynamic functions obtained from

simulations at constant temperature (N,V,T) and constant

energy (N,V,E) for hexane and flexane at T~200K, p*=0.33749.

U=total energy, ¢=total LJ 12-6 potential energy,

¢i=intramolecular contribution to ® and ¢ =total dihedral

only ).

U/Jmol--1

©/3 mol *

0iﬁrmml:1
8 /3 mol”*

T/K
P/bar

Length
of run

/ps

48.0

Hexane

(N,V,T) (N,V,E)

-37330+70 -37580+0
-50270+40 -50290+60
. -1480+10
5460+60 5210+60
200.0+0.9 200.4+1.5

550+30

570+70

62.4

angle potential energy (* indicates calculated for comparison

Flexane

(N,V,T) (N,V,E)

-42330+690 -42300+0
-49810+69 -49750+80
-1379+10 -1370+10
*30420+480 *30500+250
200.0+0.90 200.9+1.6
280+50 3090+40

97.6 21.6

To the number of significant figures

the error in the total energy is zero for

simulations.

The actual constancy of the

quoted in table 5.1
the constant energy

energy was monitored

by calculating the root mean squared deviation in U and was

found to be no more than 9.095% of the mean total energy for

either hexane or flexane.

As found previously for simpler systems [66] (N,V,T) and

(N,V,E) MD simulations produce results for the thermodynamic
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properties which are in good agreement. Apart from the
dihedral angle potential energy in hexane, which in turn
affects the total energy, all other properties agree to within
the estimated errors for both systems. This disparity in the

Ib« for hexane is almost certainly a result of the, previously

mentioned, long relaxation times involved in the
conformational changes and the fact that the respective
simulations did not start from the same initial configuration,
consequentially they represent different time periods in the
evolution of the system. Comparisons between hexane and
flexane reveal that energetically the systems are very
similar. The total energies differ by ~5@GQJ'EQI:¥, largely
due to the contribution from ¢& which does not exist in
flexane. The d&’s given in table 5.1 for flexane have been
calculated forrgggﬁarison only and they show the large
difference in the internal structure of the molecules. There
is a smaller difference, ~45014mg:f, in the total LJ 12-6
potential energies of which ~lﬂﬂ);@9[j is accounted for by the
intramolecular contribution, further reflecting the different
internal structure. The remaining small difference implies
that the intermolecular structure is affected by the

introduction of the dihedral angle potential. This is also

borne out by the higher pressure in the hexane system.

To determine the significance of this pressure disparity,
~27@0bar, a sample of flexane was compressed and equilibrated

at a slightly higher density of p*=0.34197 for a period of

179



~6@ps. Averages were then taken over a further period of 20ps
at constant temperature. The densification caused an increase
in the pressure to 650+4@0bar and a decrease in the total
energy to —4284ﬂi86£1§ﬂ:f. This wasgfyg}izi due to a change
in the intermolecular LJ potential energy as the
intramolecular contribution remained constant, to within the
errors of the calculation, upon densification and the
temperature was the same as before. From the pressure and

volume changes an approximate compressibility has been

determined using the following equation

where V=(V,+V,)/2 ', 1AV=V,-V, and . AP=P;-P,, The value of'B
obtained of (3.6iﬂ.6)*10—ﬁ¥q;1‘, is in the range found for
many real liquids [125]. It was further estimated that a

volume decrease of only ~1% would be required to bring the

pressure of the flexane system up to that of hexane.

These results show that thermodynamically these two
fluids are very simiar, especially when compared to the
previous cases of the diatomics and the shorter alkanes.
Clearly the conformations of the molecules are likely to be
radically altered by the introduction of a dihedral angle
potential so it is important to compare the fluids at a more
fundamental level to establish the possible causes of any

differences in their rheological behaviour.
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5.5 Radial Distribution Functions

Fig.5.2 shows the site-site pair distribution function,
g(r), for sites of different molecules. The slight difference
between the two is consistent with the pressure and energy
disparities. Although the potential is truncated the
oscillations around g(r)=1 continue out at least to half a box
length, 3.420. The error introduced by calculating the long
range correction to the potential energy with g(r)=1 for rir¢!
was calculated by numerically integrating the relevant
function over g(r). This error was found to be ~@.1% of the
total potential energy which is of the same order as the

inherent error due to fluctuations in the system.

Fig.5.3 shows the radial distribution function for the
centres of mass G(R). The reduction in the amount of
averaging on going from sites to COM results in poorer
statistics but there are significant differences between the
two. Hexane exhibits a split first peak indicating preferred
alignments within the nearest neighbour shell. This has also
been seen in rigid diatomics modelled by a two centre LJ 12-6
potential [39] where for moderate anisotropies the splitting
is caused by molecules being aligned with their axes either
parallel or perpendicular, the parallel alignment being that
of minimum COM separation. Flexane shows a broader less

aligned distribution with a noticeable tendency for the COMs
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Figure 5.
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to be further apart within the range 1l.0—1.30 than in hexane.

5.6 Orientational Cross Correlation Function

To further determine the degree of alignment between
molecules as a function of COM separation a cross correlation

function has been calculated, P,(R), defined as

NN,
2 } (rie;-rie;) S(IRjjl - R)
PRy = LI 5.6.1)
Pa N N Ao =
Y ) sURi;l - B
i=1 j>i o

where Rj is the position of the COM of molecule i. For no

preferred orientation the average value ofiPlﬂnf will be 1/3,

for parallel alignment P,(R) > 1/3 and for perpendicular

alignment P,(R) < 1/3. In fig.5.4 IQ(R) is plotted as a

function of R for hexane and flexane. The function is similar
for both fluids beyond ~20 as it quickly decays to the
expected large R value of 1/3. In the region between lo and
20 there are noticeable differences between the two with
hexane becoming aligned at slightly smaller separations than
flexane and to a greater extent. This is consistent with the

previous interpretation of the G(R).
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Figure 5.4 The orientational cross—-correlation
function P (R) vs. R, hexane ( )
and flexane (——-), T~200K.
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5.7 Intramolecular Structure

Figs.5.5, 5.6 and 5.7 give the probability densities for
the separation of sites within a molecule that are separated
by two, three and four others, respectively. All possible
contributions are taken in these distributions so fig.5.5 is

the average of ry4(=lry4l), rpg and rgze, where the indices refer

to the six sites of a molecule andigijé % T There is a
marked difference between the distributions for hexane and
flexane caused by the inclusion of the dihedral angle
potential. Hexane shows prominent peaks at points which

491 (¢ =120° ). For sites separated by two others the effect of
®(x)- is most pronounced producing a sharp peak for the Trans
conformer and a broader smaller peak for the Gauche
conformers. For sites separated by three others there are
peaks corresponding to TT and TG conformers but GG states are
not present because they lead to separations less than & and
are therefore less likely as these sites interact through the
LJ 12-6 potential. This results in only a few of the
otherwise 27 possible conformers being in evidence for the
end-to-end separation, (ryjg. The main conformers being TTT
(rig=6.3081), TGT (rye=5.793R), G,T6_ and GTT (rye=5.2268 for

both) .

In flexane the distributions are much broader but not

entirely featureless. There is some indication that all sites
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Figure 5.5 The probability density for the distance
between sites separated by vtwo others
e(r,,) vs. ry,, hexane ( ) and flexane
——  |g _(=—=-), T2008.
16
14
12+ ¢
~
< 10
Li 8 }
@ 6
A
2 C
0 L=
2.5 3.0 3.5 4.0
rM/A
Figure 5.6 The probability density for the distance
between sites separated by three others
e(ry,g) vs. ryg, hexane ( ) and flexane
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Figure 5.7

The probability demsity for the end-to-end

separation of sites,

o(r,g) vs. r,;g, hexane ( ) and flexane

(=+=+=), T~200K.
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align in the same plane, i.e. with {«} = & (Trans) or 180
(gis). For sites separated by three others there are
discernible peaks for the TT and TC conformations. For rig
this is less pronounced but there is a broad peak between 4.83

and 5.98 which corresponds to the TTC and CTC conformers.

The distribution of dihedral angles which give rise to
the various conformers have also been calculated. In the
models used here the two outer dihedral angles, « - and %3, are
equivalent and so the distributions obtained from these two
have been averaged together and are shown in fig.5.8 whereas
the distribution for the central angle,-gg, are shown in
fig.5.9. Once again the effect of '®(«) is very marked in the
hexane case producing peaks correspénding to the minima in the

potential.

To further compare the internal structures the
percentages of Gy, T and G- dihedral angles, and hence the
percentage conformers, has been calculated using the following
criteria for assigning a label to a dihedral angle, « :-

6. if -180 < « <-6&

T if -60 < &« < 60°

4y if 60" < « <189°

The average percentages of dihedral angles and the various
conformers from the equilibrium simulations on hexane and

flexane are given in table 5.2.
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Figure 5.8 The probability density for the outer
dihedral angle 9(“1’3) vs. “1’3 ’

hexane (1) and flexane (2), T~200K.
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Figure 5.9

0.040

0.03%5

0.03 }

0(,) .l

0.020

0.0!8 }

0.010 }

0.008

0.600

0.007

0.006

00, s

0.004 }

0.003

0.002

0.001

0.000 |

The probability density for the central
dihedral angle p(x;) vs. «, ,

hexane (1) and flexane (2), T~200K.

- (1)

-150 -100 50 0 50 100 150

_léO -100 -50 0 30 100 150

X2




Table 5.2 The mean percentage of dihedral angles and

conformers from the equilibrium calculations on hexane and

flexane at T~200K.

2 of dihedral angles

Hexane Flexane
%, 3! & 4,3t %
G- 13.0+1.5 12.3+40.8 30.4+1.5 14.7+1.5
T 73.2+2.2 74.8+1.9 39.1+1.8 70.6+1.7
Gy 13.9+41.7 12.8+1.1 3@.5+1.4 14.7+1.2
% of conformers
Hexane Flexane
PTE 32.0+2.5 6.0+0.6
TTG 33.2+1.7 30.0+1.2
TGT 24.2+1.6 11.741.0
TGG g.6+0.4 12.9+90.8
TG4G_ 0.0+2.0 2.9+0.1
GTG 5.4+0.7 17.3+1.0
G4T6_ 4.5+0.4 17.3+0.9
GGG g.0+0.1 4.140.4
Others 8.0+9.9 g.8+0.1

The percentage of dihedral angles and the distribution
functions indicate that there is a balance in the number of QEK
and g:;states for both hexane and flexane. In flexane this is
to be expected because of the lack of barriers to rotation but

in hexane it is possible that the slow relaxation of the
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internal modes could result in the system being trapped in a
non-equilibrium state on the time scale of these experiments.
The fact that there is near equality in the number of G4 and
G- angles maybe a fortuitous result of the equilibration

procedure or it could indicate that the system is close to

equilibrium.

Apart from the clear differences in the distribution of
dihedral angles between hexane and flexane there is also a
contrast in the distribution for ther outer angles, &y and %3,
and the central angle, &%z. In hexane the distribution for
both types of angle are very similar but in flexane there is a
striking contrast with a large proportion ~780% of %'s being
in the T state compared to ~40% for the outer angles. Without
any dihedral angle potential this must be entirely due to the
intramolecular interactions between sites 1, 2, 5 and 6 and
the intermolecular interactions. To determine the degree to
which the bulk fluid effects the conformations of these
molecules probability densities were generated for a molecule
in isolation. This was achieved by measuring the total
intramolecular energy, ®int» for a particular configuration
generated by rotating ﬁgéﬂéihedral angles through 360" in 5
steps. Permutating over all the combinations of dihedral

angles in this way accounts for the inherent degeneracy of

states. The probability for a particular configuration, Pji,

was then calculated using
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lpy = exp(—®ipnt;/kT)/ - } exp(—0intj/kT)

» Where the sum is over all the 373248 configurations sampled.-

The Pi’s were then used to calculate probability densities for

separation e(ryg)'. These gas phase probability densities are

shown in figs.5.10, 5.11 and 5.12 together with the

experimental ones determined from the equilibrium simulations.

In flexane the distribution of dihedral angles agrees
quite well with that predicted for a single molecule in
isolation. There is a slight tendency for there to be an
excess in the region ofrgg=@°and %,3 =ile’which is
consistent with the excess in p(;;eﬂ*in the region of 5A
indicating that in the bulk figg;#;£e TTC and CTC conformers

are preferred to some extent. -

In hexane there are significantly higher proportions of
gauche angles than predicted from the boltzmann factors. This
has been quantified in terms of the observed and 'theoretical’

percentages of the respective angles in table 5.3.
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Figure 5.10 p(o:l'a) and p(x,), hexane, comparison with

'gas phase’ distribution (- - -),T~200K.
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Figure 5.11 As fig.5.10 for flexane, T~200K.
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Figure 5.12 e(ryg), comparison with the ’gas phase’
distribution (- - -), hexane (1) and

flexane (2), T~200K.
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Table 5.3. The observed (obs) and expected (exp)

percentages of dihedral angles for hexane and flexane at

T~200K.
e BE e 1
G T G T
[obs 27 73 25 75
Hexane - —]
Exp 16 84 5 95
[obs 61 39 29 71
Flexane - —
| Exp 57 43 32 68

Qualitatively the same effect is seen in the p(r,q)? with
significantly less all trans conformers than is predicted and
a correspondingly larger probability of conformers containing

a gauche angle.

From the flexane case it is clear that the bulk fluid
does exert some slight influence on the internal structure of
molecules. In hexane there is an apparently much greater
effect which is not unfeasible as it is likely that a fluid of
more rigid molecules will influence the intramolecular
arrangement of a molecule more than a fluid made up of
flexible ones. It could be equally well argued that a rigid
molecule is more capable of resisting the efforts of the bulk
fluid to alter its structure. This again brings into question

the equilibration procedure and the possibility that the
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hexane system is to some extent 'frozen' in a non-equilibrium

state.

5.8 Intramolecular Dynamics

To establish whether the system is in equilibrium
requires a knowledge of the rates of transition over the
internal barriers for the competing G—T and T—G processes.
Parity between these rates would be indicative of equilibrium
but their actual determination in a MD experiment is not
always straightforward because of the ambiguity in defining
what constitutes a 'transition' and the possible poor
statistics which will occur when slow transition rates are
combined with the fact that there are relatively few dihedral
angles to be sampled over. As an attempt at determining these
transition rates the changes in the dihedral angles were
followed closely in equilibrium runs for hexane and flexane.
Transitions were deemed to have occurred when the angle passed
through any of the three maxima in the potential at.q;i6ﬂ°and
7q=18ﬂ: with the direction of crossing determining whether it
is a G—=T or a T—>G transition in the case of g=i6@i It is
then a simple matter to count up the number of each type in a
certain time span and arrive at an estimate for the frequency
of a transition. The definition of a transition used here is
a simple one and does not take into account the possibility
that an angle may temporarily just cross one of the 'barriers’

only to return to the same potential well causing two
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transitions to be registered using the accounting scheme
described whereas, in fact, no complete transitions took
place. Other definitions have similar problems and thus the

ambiguity.

In table 5.4 the numbers of the various transitions from
a period of ~62ps of an equilibrium simulation of 108 hexane
molecules is given along with those for the same count

performed over a much shorter time ~22ps on a flexane system.

Table 5.4 The number of transitions observed in
equilibrium simulations at T~2@0@K on hexane and flexane in a

period of 62ps and 22ps respectively.

&gty %2
G»T T»G GG G-T T-G G+G
Hexane 69 69 17/ 31 25 g
Flexane 2559 25580 2793 1234 1233 190

The flexane data is included for comparison only as their
are no barriers to rotation arising from a dihedral angle
potential but it is interesting to note that for & G—G
transitions are much less frequent than the rest. The
probability densities in fig.5.9 reveal that in flexaneﬁggg
values in the region of 1186°are particularly unfavourable
because of the intramolecular LJ interactions consequentially
there is a low rate of G—G transitions. For the other

transitions there are no appreciable barriers and the rates of
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crossing are high with virtual equality in the numbers of G—T
and T—>G movements. Rates of Ge=»T transitions are only
slightly less for o« as the total number counted less than

half the figure for the total for e« and 3 -

In hexane a period of almost three times that sampled for
flexane produces relatively few transitions. As expected
there are no G—G transitions as this barrier is of order 1@kT
at 200K. There is an imbalance in the numbers of G—T and
T—>G transitions but with such poor statistics it is
impossible to say whether this is systematic or not. As for
flexane there is no indication that the rates of T«—G
movements is significantly larger for the end dihedral angles.
From the total number of transitions (N¢ ), the length of the
sampling time (tg) and the total number of dihedral angles
(Ng) the mean time between transitions (Tﬂ) in a dihedral
angle has been estimated from

Tm ='Natg/N¢ - ) - (5.8.1)

For hexane Tp~110ps but for flexaneif@yﬂ.7ps which gives a
measure of the contrasting timescales for the internal modes

in these two models.

To examine in more detail the dynamics of the internal
degrees of freedom two other types of functions were
calculated. Firstly, the time correlation function for the

dihedral angles, Cu(t)', defined as
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Calt) = <o (0)axj(t)> | (5.8.2)

where j=i for the auto-correlation function (acf) and j#i for
the cross correlation functions, and secondly the mean squared
displacement of the dihedral angles

2
i

& = <(ay(t) -« (03 . (5.8.3)

The acf's for « are shown for hexane and flexane in
figs.5.13 and 5.14. Once again the different time scales for
the relaxation are apparent with hexane showing a decrease of
only 20% in correlation in 35ps whereas in flexane the angles
have totally decorrelated in one tenth of that time. It is
possible to discern in flexane a different relaxation curve
for & whereas in hexane the time over which‘correlations were
carried out is not long enough to establish a similar trend.
Fitting the functions to the form Cg(t)=exp(-t/T) gives
relaxation times of ~@.33ps for % ,s and ~@.54ps for o' in

flexane and relaxation times in excess of 10@ps for hexane.

The dihedral angle cross correlation functions are shown
in fig.5.15 for flexane. The functions‘(«lﬂnazﬁﬂ> and
<x(0)xa(t)> ' have significant zero time ;;iﬁ;;';ggfgﬁow
QEAAI;; relaxation behaviour as the self correlation functions

but <a1ano%(t)>5 has a much smaller zero time value and is a

particularly noisy function. The existence of correlation
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Figure 5.13 The normalised dihedral angle correlation

function éa(t) vs. t, hexane, T~200K.
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Figure 5.14 As fig.5.13 for flexane, T~200K.
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Figure 5.15 The normalised dihedral angle cross-
correlation function é“ij(t) vs. t

flexane, T~-200K.
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between nearest neighbour angles points to a degree of
cooperative motion even in this highly flexible molecule. For
hexane the length of correlation times is such that it is
impossible to see this effect in the systems used here without

sampling considerably more of phase space.

The second function,iraz(t), is shown for hexane and
flexane at short times in fig.5.16 and at long times in
fig.5.17. At all times there is a considerable difference in
the magnitude of a?(t)'between hexane and flexane as would be
expected. The interesting differences lie in the qualitative
behaviour at short times. Flexane shows a smooth transition
from an initial quadratic rise of ﬁﬁ(il;with time to a linear
rise very similar to that seen in the mean squared
displacement of particles. In hexane jfgﬁl shows the effect
of the dihedral angle potential particularly well as the

function is highly oscillatory at short times. For ‘ag(t)

there are at least nine discernible oscillations in a périod
of 1.8ps. For ﬁaf’a(t)' in hexane the behaviour is slightly
different at shortAEI;es as the oscillations are damped out by
the tendency for angles to undergo transitions which gives
rise to a more linear increase in 655;1. Flexane shows a
factor of two difference ingjf(il between the end angles, «,
and %, and the central angle, %, even at short times whereas
in hexane only the long time values of Ufﬁt[ show the
divergence of the functions for the different types of angle.

From the long time slope of Rzﬁﬁ it is possible to define an
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Figure 5.16

The mean squared displacement of the

dihedral angles Rz(t) vs. t at short

times,

hexane (1) and flexane (2), T~200K.
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Figure 5.17 ‘Ez(t) ve. t at longer times, hexane (1)

and flexane (2), T~200K.
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angular diffusion coefficient Daﬁ given by

(5.3.44)’

Furthermore, if one assumes that two transitions, one forward
and one backward, are possible for each 120 degrees that the
angle diffuses through then it is also possible to define

another mean time between transitions,frh, as

Tm = 120%/2D, . | (5«B.8)

The results for Dy and Ty are given in table 5.5. for hexane

and flexane.

Table 5.5 The angular diffusion coefficient, Dy/, and the
mean transition time, Ty , as defined in eqgns.5.8.4 and 5.8.5 ,
determined from equilibrium simulations of hexane and flexane

at T~200K.

Dg,/pS’ D, /ps’ Tm, /DS Tuy/PS

Hexane lﬂﬂilﬂ 70ilﬂ 72i8 99ilﬂ

Flexane 19960+530 5530+509 0.66+0.03 1.03+0.12

It can be seen from table 5.5 that the mean transition times
evaluated using eqn.5.8.5 are in reasonable agreement with
those obtained using egn.5.8.1.

So far it has been established that the two molecules
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have very similar gross thermodynamical properties some small
differences in static intermolecular correlations and
completely different internal structure and dynamics. The
torsional modes in these fluids have already been shown to be
on a time scale comparable to that of intermolecular motions
so it is more than likely that there will be significant
coupling between the two. The possibility is then that there
will be differences in the diffusive motion of the two

molecules, and thus presumably in their viscosity.

5.9 Self Diffusion

The diffusive motion of these molecules has been
monitored in the usual way through the velocity

auto-correlation function (VACF) given by

SRt TR0 (e (5.9.1)

and the mean squared displacement

©(5.9.2)

t
R (t) = <(By(t) - Ry(0))3 = <( j vi(s) ds )™
o _

where'gi and V; are the position and velocity of the COM of
molecule i. In addition a number of resolutions have been
performed to try and probe the motions of these molecules more

deeply and these will be discussed in turn.
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In theory it is possible to determine the diffusion

coefficient from either cv(t) or R ug from the following

egns.
[--]
1
AL CICR (5.9.3)
3) v
and
D = lim R2(t)/6t (5.9.4)

In practice it is simpler and more efficient to calculate
D from egn.5.9.4 as all that is required is a knowledge of the
position of the COM relative to its original position at a
number of time intervals. This quantity squared, averaged and
plotted as a function of time allows a slope to be determined
graphically , or otherwise, from which D can be obtained.
Egn.5.9.3, however, requires a detailed accurate knowledge of
Cy(t) ' which requires the storage of much more information, in
the form of velocity vectors, and a large amount of
correlating. For systems in which diffusive relaxation times
are short it has been shown previously that reliable estimates

can be obtained from both methods [66].

For the reasons stated above the VACF has only been
determined for short times, ~2ps, whereas the the mean squared

displacement has been followed for much longer periods. Cy(t)
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and ﬁz(t) are shown in figs.5.18 and 5.19. From fig.5.19 it
can be seen that flexane clearly diffuses more rapidly than

hexane and this is quantified by the diffusion coefficients

obtained from the slopes of these graphs given in table 5.6.
Also given in table 5.6. 1is the value for D obtained by

numerically integrating the VACFs shown in fig.5.18.

Table 5.6. The diffusion coefficients for hexane and flexane

obtained from :-
(a) the mean squared displacements and
(b) the integral over the velocity auto-correlation function.

(a) (b)

D/10 “m°s D/10 °ms !
Hexane @.351@.62 0.491@.08
Flexane 6.53iﬂ.lﬂ ﬂ.96iﬂ.@6

There is a large disparity in the values obtained from
the different expressions but this is not unlikely considering
the fact that the VACF for both fluids shows a tendency to
remain negative out to at least 2ps and it is known for other
fluids that this long time tail can persist for much longer
[126]. Truncation of Cv(f) in this case will, thus, result in

the observed overestimation of D.

The general form of the VACFs is the same, an initial
rapid decay is followed by a long negative region out to about

t=2ps beyond which (Cy(t)~@. In the case of hexane the
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Figure 5.18 The normalised velocity auto-correlation

function év(t) vs. t, hexane ( ) and

flexane (—-—-), T~200K.
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Figure 5.19 The mean squared displacenenf of the
centres of mass ﬁz(t) vs. t, hexane (1)

and flexane (2), T~200K.
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negative part of the function is much more pronounced than in
flexane with the result that the integral over Cy(t), and,

therefore, D, is less for hexane than for flexane.

The two minima that appear in both functions, at t~@.25ps
and t~@.55ps, are characteristic of molecular fluids [111].
Resolution of the VACF into directions parallel and
perpendicular to the end-to-end vector, r;g, are shown in

figs.5.20 and 5.21 for hexane and flexane where

Guy (V) = (0 T (0/ <O , _ds-a
(B = O s, o
W= Thofe
and yev-y .

— S

These clearly show that the double minima originates from the
motion perpendicular to ryg. This has previously been
interpreted for diatomiés [111] as being caused by successive
collisions of either end of the molecule. The results here
suggest that it is a feature of elongated molecules in
general. It can also be seen from figs.5.20 and 5.21 that
there is a less pronounced negative dip in flexane for both
,?Xﬂft)w and cvl(t)j as was the case for\f&(&), which shows

that the enhanced diffusion does not occur specifically in
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Figure 5.20

The normalised auto-correlation function

for the velocity parallel to r,g

Cv"(t) vs. t, hexane (——) and flexane

(———), T+200E. |

0.0

Figure 5.21
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The normalised auto-correlation function
for the velocity perpendicular to r,g
CVL(t) vs. t, hexane (——) and flexane
(—=—-), T~200K.
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either of the directions but is an isotropic effect.

The integrals of these functions would give values for
the diffusion coefficients parallel, Dy , and perpendicular,
D|, to ryg but as these are subject to the same problems as
evaluat1ﬁ§ D from Cy(t) the ratio _D"/qt;has been calculated

and is given, along with the zero time values, in table 5.7.

Table 5.7 The mean squared velocities and the relative
diffusion coefficients parallel and perpendicular to ryg’ in

hexane and flexane at T~200K.

= 2 e —2
<VR(0)>/ms™2 - <V](0)>/m°s Dy/D|
Hexane 18900+410 38020+500 1.32+0.23
Flexane 18790+460 37540+420 1.04+0.99

The factor of two difference between cv"ﬂnv and CVL(O)

is simply caused by the fact that there is onlyméne dééf;é of

freedom associated with the velocity parallel to /r;g whereas

the remaining two degrees of freedom are associated with the

velocity perpendicular to ryjg. What is significant is that

Dy/Dj° is in both cases greater than one which shows that the
molecules diffuse twice as fast in a direction parallel to r;q

than they do in any possible perpendicular direction.

To corroborate this finding the mean squared
displacements perpendicular and parallel to r;g were

calculated using the equations
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and

t
R(t) = < ([ ¥y(s) a8 )® | __(5.9.8
o

+ Wwhere the definitions of ¥,; and V| are as in eqns.5.9.5 and
5.9.6. The results are shown in figs.5.22 and 5.23 and the

close similarity of the curves for iﬁ(t)‘ and ‘,ﬁi(t)‘ in both

cases bears out the previous observation of enhanced diffusion

parallel to r,g-

Qualitatively the larger diffusion coefficient of flexane
can be explained by the less negative dip in the VACF. This
shows that in flexane there is less of a tendency for the COM
velocity to reverse its direction so it doesn't return as
close to its starting position after each 'collision' and,
thus, diffuses further at each collision. This is reasonable
as the relaxation of ﬁhe internal modes of flexane is fast
enough to cushion the impact of the impact of two colliding
molecules whereas in hexane the dihedral angle potential

prevents this occuring to a large extent.
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Figure 5.22 The mean squared displacement (MSD) of the
COM, ﬁz(t), and its resolution parallel,
ﬁ:(t), and perpendicular, ﬁi(t), to ry e

hexane, T~200K.

MSD/A

Figure 5.23 As fig.5.22 flexane, T~200K.
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5.10 Correlation Functions for Force, Torque, Reorientation

and Stress

One piece of evidence which supports the case for harder
collisions in hexane is the mean squared force,r(EiﬂD) '
given together with the mean squared torque, <I§“D>*<: in

table 5.8.

Table 5.8 The mean squared force and torque for hexane

and flexane from equilibrium simulations at T~2@@K.

Hexane Flexane
<T§(0)>/10">°N’n*

0.642+0.012 9.538+0.012
As can be seen the mean squared force in the hexane system is

greater than that in the flexane system.

The normalized correlation functions for the force and
the torque are shown in figs.5.24 and 5.25 respectively. The
only discernible difference is one of slightly less damped
oscillations for hexane. One other point to note is that the
normalized correlation functions for torque and force
coincide. This result indicates that the reorientation of
these molecules is largely decoupled from the fluctuations in
the forces. To check this the correlation function for the

normalized end-to-end vector, ﬁi(t)' has been calculated from
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Figure 5.24 The normalised force auto-correlation

function Cp(t) vs. t, hexane ( ) and
- flexane (——-—), T~200K. TR
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Figure 5.25 The normalised torque ;uto—correlation
function 5T(t) vs. t, hexane ( ) and
flexane (—+—--), T~200K.
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C1(®) = rag(0)ryg(t)> L (5:20.1)

Although r3yg is a crude measure of the orientation of a
molecule41£;irelaxation can only be the same as or faster than
that of the 'true' orientation as the internal modes can only
aid decorrelation. The functiongpl(t) is shown for hexane and
flexane in fig.5.26. It can be seen from this figure that in
the time it takes for the forces to relax, ~lps, there is only
a small change ingEhSP) confirming the decoupling of

reorientation from the force fluctuations. Cy(t) for flexane

decays more rapidly than for hexane, indeed the best fits to

the form

Cy(t) = exp(-t/T)

give estimates for the relaxation time, ‘T, to be ~3@0ps and
~78ps for flexane and hexane respectively. How much of this
difference in the relaxation times is accounted for by the
ease of internal rotations in flexane and how much is caused
by a 'true' difference in the rate of reorientation is not
obvious from these results. To obtain this information would
require the calculation of a more meaningful orientational
correlation function, possibly based on the vectors which
diagonalise the moment of inertia tensor. For flexible
molecules these vectors also change with time, like ryg’, but
the actual process of having to diagonalise N matriégéiat each

step the orientation is needed would be quite time consuming
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Figure 5.26
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and was not considered worthwhile for the purposes for which

the orientation was required here.

To complete the characterisation of these fluids at
equilibrium one other correlation function has been evaluated.

This is the stress correlation function, Cg(t) , defined as
%) = <Ogp(0)0g()>.

, where OEB is an off-diagonal element of the stress tensor.
In theor;Wit is possible to determine the viscosity from Cg(t)
but because of the problems already discussed of poor
statistics, stemming from its collective nature, and long time
correlations, it is impractical for this purpose within
present day limitations. It does produce two useful pieces of
information though , the infinite frequency shear modulus, Ge

(=<OZBGD>V/kT)  and the form of the stress relaxation, at

least at short times. The normalized stress correlation
functions, ﬁs(tw, are shown in figs.5.27 and 5.28 for hexane
and flexanéjﬁ”E;(t) was averaged over all possible
off-diagonal elements of the stress tensor, the total length
of the averaging period being ~38ps for hexane and 26ps for
flexane. The mean squared stress, resultant Goo and

viscosity, obtained from numerically integrating Cg(t) are

given in table 5.9.
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Figure 5.27 The normalised stress correlation function
és(t) vs. t, (i) at short times, (ii) at
longer times and (iii) the integral of

Cg(t) vs. t, hexane, T~200K.
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Figure 5.28 As fig.5.27 for flexane, T~200K.
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Table 5.9 The mean squared stress , infinite frequency
shear modulus and viscosity determined from the stress

correlation function for hexane and flexane at T~200K.

) <<J:.(B(0)>/1015Pa2  Gw/GPa n/mPa s
Hexane g.62 4.3 l.3iﬂ.4
Flexane @.59 4.1 ﬂ.51@.2

From the figures it can be seen that the initial
relaxation is complete within ~@.2ps which, understandably,
coincides with that of the intermolecular forces which largely
determine the stress. In flexane Cg(t) exhibits a pronounced
negative dip in this early part ofb££; relaxation which
appears to be dampened out in hexane. Beyond about @.4ps it
becomes difficult to distinguish the actual form of Cg(t) from
the noise but from the integrals, not shown here, itﬂigiclear
that Cg(t)' has a long positive tail which causes the integrand

to, on average rise, out to at least 5ps.

Like many of the other static intermolecular properties
of these two systems the mean squared stress, and hence G;";
are very similar. The viscosities evaluated fromlgggg) are
not, however, differing by a factor of about two despite the
large error bars. How much credence is to be placed in these
values for the viscosity must be tempered by the previous poor
comparisons made already between n determined from cg(;) and n

determined by non-equilibrium methods.
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5.11 Conclusions

The principal aim in this study is to determine the
extent to which flexibility affects the rheological , i.e.
flow, properties of molecular fluids. So far it has been
shown that the equilibrium static intermolecular properties of
these fluids are very similar but the intramolecular structure
and dynamics are quite different. Furthermore, the internal
structure and dynamics has been found to affect the diffusive
motion of the molecules to a significant extent. This, and
the results for the stress correlation function, raise the
possibility of different flow behaviour particularly as the
most important rheological property n, the viscosity, can be
related to the inverse of the diffusion coefficient [127]. To
determine whether this was the case HSNEMD simulations were

performed, the results of which are given in the next section.
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CHAPTER 6

HEXANE AND FLEXANE : NON-EQUILIBRIUM RESULTS AT 200K

6.1 Introduction

To measure the rheological properties of these systems
the method of HSNEMD was used as described already in
sec.2.15. The general procedure was to apply a step function
shear rate, $, to a configuration which was either at
equilibrium or at a steady state at the next lowest shear

rate. For the shear rates less thano‘i.}jli]i()“é—1 the former

approach was used, so that the relaxation to a steady state
could be observed, whereas for the higher shear rates the

latter method was employed, so as to reduce the amount of time

required to attain a steady state.

Shear rates of 1,2,5,10 and 2@*&9&%§{; and 2,5,10 and
2@*19f¥[1: were applied to the hexane and flexane systems
respectively. To monitor the relaxation to a steady state the
components of the stress/pressure tensor, egn.2.11.3, and a

collective orientation tensor, D, defined as

a

N
=7 } Fielie '
i=1

e

¥
3

have been followed as a function of time after the imposition

of a step function change in shear rate. The most important

g

components of these tensors are the off-diagonal elements o;z»
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and D*é‘which directly couple to the shear for the geometry of

the flow imposed here, 'y=%§xv . The other off-diagonal

components are small for this flow symmetry. The on-diagonal
components of the tensors are also important , especially
those of the stress tensor with regard to the normal pressure

effects.

6.2 Results at 200K

In the previous simulations, on simple diatomic and
triatomic molecules, relaxation to a steady state presented no
problems as it occurred rapidly within a few picoseconds of
applying the step function in shear rate. In these much more
complex systems it was found that the relaxation of the
alignment was particularly slow requiring of order 50ps to
approach close to its long time value. The stress, however,
apparently relaxed much faster. This is demonstrated in
fig.6.1 where the development of oxzﬁﬂ andeszﬂ are shown,

normalized by their estimated long time values, for the case

of a shear rate of‘lfytggitf

applied as a step function to an
equilibrium sample of hexane. The stress correlation
function, discussed previously and shown in fig.5.27,
indicates that the initial relaxation of the stress will be
rapid but will then be followed by a period of slower
relaxation to its final long time value. In an experiment

such as this it is difficult to see any long time relaxation

in the stress because of the large and rapid fluctuations in
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Figure 6.1

The shear stress, cxz(t), (4), and the
alignment, sz(t), (0), expressed as
fractions of the limiting long time
(70-120ps) values and plotted as a
function of time elapsed from the

imposition of a steady strain rate of

101% 7%,

The full and broken lines are

best fits to the form f(t)=l-exp(-t/T),

(- - - 1=2.8ps, T=25p8)-o
. N~
]
]
]
| I
[
]
]
.
]
]
]
4
]
]
]
1
]
]
]
]
. a
<) —
| -+
:
]
<«
]
]
]
]
o
]
]
]
]
<)
\
1
(@]
(@]
<




this property. Indeed, from table 5.9 it can be seen that the

root mean square value of the stress is of order 250bar.

This is not the case for the alignment which varies much
more slowly and fluctuates much less. It is clear from
fig.6.1 that the collective orientation requires a long time
to reach a steady state. This is to be expected as the rate
of collective reorientation must be determined to a large
extent by that of the sihgle molecule reorientation. As has
been shown in sec.5.10 single molecule relaxation times are in
the tens of picoseconds range which is consistent with the

relaxation time of T=25ps for the best fit of szﬂﬂ to the

form

Dy (B/B () = 1 - exp(-t/T) -~ - (6.2.1)

A corresponding fit to oxz(t)’ gives a value of T~3ps which

means that the stress reiaxétion is complete within ~1@ps
which agrees with the result from the stress correlation
function shown in sec.5.10. The conclusion from this must be
that although the non-attainance of a steady state in the
collective orientational order implies a similar state of
affairs for the intermolecular structure, and hence the
stress, this long time relaxation of the stress provides a
negligible contribution to the viscosity at least for the
large perturbation applied here for which a highly non-linear

response would be expected.
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The relaxation times for the best fits to the form of
eqn.6.2.1 are given in table 6.1 for hexane and flexane at all

the shear rates in which an equilibrium fluid was perturbed.

Table 6.1 The best fit Iﬁvalues for the form of Dxéﬂﬂ, as
given in eqn.6.2.1, following a step function application of a
shear raté,‘ﬁl to a sample of hexane and flexane at T~200K.

Dxéﬂﬂ, is the estimated long time value of D;éﬁﬂ .

10-1 ¥ ,
{T/ps i

moee i D™
Hexane 1 25.0 g.150
Hexane 2 20.9 g.174
Flexane 2 19.0 9.128
Hexane 5 9.5 g.202
Flexane 5 6.5 g.175

Two points to note are that the;T;values decrease with
increasingA?’showing the non-linearity of the responses and
that T for hexane is larqer than that for flexane. The
difference between the rates of collective reorientation in
hexane and flexane is roughly a factor of two, which
corresponds with the difference between the rates for single
particle reorientation, discussed in sec.5.1@ This is
consistent with the supposition that the rate of collective

realignment due to shear is closely connected with the rate of

reorientation of individual molecules at equilibrium.
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Steady state averages of some thermodynamic properties
and the significant components of the stress/pressure tensor

and alignment tensor are given in tables 6.2, 6.3 and 6.4.
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Table 6.2 The mean thermodynamic functions obtained from

the steady state shear calculations on hexane and flexane,

T~200K,

(* indicates calculated for comparison only).

The

figures in parentheses are the total time of the simulation.

Hexane

/10*%*

19

20

Flexane

¥/10%%™?

10

20

U

¢

o

T/K

-1 -1 .
/3 mol™* /imol™" /mol”*

-37480
+120

-37550
+50

-37540
+80

-37400
+120

-37290
+120

U

-42320
+70

-42240
+80

-42030
+60

-41660
+130

/3 mo1™*

-50120
+120

-50060
+60

-49730
+30

-49430
+50

-48850
+90

o/

1”/Jmol-—”,

-49810
+70

-49720
+80

~49510
+60

-49150
+130

5150
+20

5040
+70

4700
+60

4550
+70

4979
+100

OG\

/Jmol

30100
+360

29870
+450

28620
+360

28660
+600

200 .00
+0.00

200 .01
+2.01

200.04
+0.01

200.10
+@.00

200.26
+0.02

T/K

200 .00
+0.902

200.02
+0.01

200.08
+0.01

200.27
+8.02

211

P/bar

730
+80

800
+50

1130
+20

1370
+10

1850
+60

P/bar

370
+50

460
+50

690
+50

990
+110

Length
of run

/ps

48
(198)

60
(108)

517
(198)

48
(48)

48
(48)

Length
of run

/ps

122
(159)

82
(117)

42
(196)

46
(194)



Table 6.3 The mean shear stress, resultant shear
viscosity and mean normal presssure components from the steady

state calculation on hexane and flexane, T"200K.

212

Hexane
10°—1" oy e il A .| e
_BW%]) (ogery n/mea s Bgpell ! pomeR g flar
1 292443 2.919+0.434 702+77 615+87 741+62
2 495422 2.477+0.110 721+65 737+46 931+66
5 751+59 l.Sﬂliﬁ.lﬂﬂ 898+60 969+10 1520430
19 897+12 0.897+0.012 1094+92 1318+58 1791+66
20 1135455 ©.568+0.028 1231+44 18190+197 2501+88
Flexane
7/10”5’ o _/bar, n/mPa s P . /bar P Ll P h /bar
SEY: mPx T Paber Fyber o
2 287+69 1.437+0.346 309+85 354+77 436+74
5 532+63 1.065+0.127 350+69 495+109 618+79
19 759+66 ©@.759+0.066 342+100 544+95 884+112
29 1117492 @.558+0.046 485+110 786+162 1323+187



Table 6.4 The mean significant components of the

alignment tensor obtained from the steady state shear

calculations on hexane and flexane, T?2ﬁﬂK.

Hexane

$/10%%™*

1

2

5

10

20

Flexane

$/10*%s~*

2

5

10

20

D
Xz
@.150+0.011
0.174+0.007
.202+0.008
@.216+0.007

0.189+0.019

D

Xz
0.128+0.016
0.175+0.012
0.194+0.015

0.186+0.015

Dr1/3

0.053+0.013
0.099+0.013
0.188+0.018
0.265+0.014

0.316+0.017

P;x-l/3

0.084+0.921
6.168+0.011
¢.189+0.013

0.24240.915

_2221/3
-0.009+0.017
-0.053+0.008
-0.076+0.012
-0.132+0.005

D -1/3

24 d
-0.108+0.007
-0.098+0.012

6.3 The Shear Rate Dependence of the Viscosity

D,z1/3
-@.G4®iﬂ.ﬂﬂ8
-0.045+0.012
-0.113+0.012
-9.131+0.012

-0.166+0.014

Dyg /3
-0.059+0.011
-0.090+0.012

In fig.6.2 the shear rate dependent viscosities, given in

table 6.3, are plotted as a function of the square root of the

shear rate for both hexane and flexane.

The curves show

characteristic shear thinning behaviour but to differing

extents.

At the lowest shear rate the viscosities differ by

at least a factor of two but hexane shear thins much more than
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flexane so that at the highest shear rates there is virtually

no difference in the viscosities.

As for the other fluids thegjgﬁyvdata has been fitted to
the three different theories discussed in sec.3.5. The
parameters for the best fits to these theories are given in
table 6.5 together with the root mean squared difference
(RMSD) between the data points and the fitted curves.

Figs.6.3 and 6.4 show the actual best fit curves for all three

predictions for hexane and flexane respectively.

Table 6.5 The best fit parameters and root mean square
differences (RMSD) for the predictions of the shear rate
dependence of the viscosity from the theories of Hess,
Ree-Eyring(RE) and Kawasaki-Gunton(KG) , (see sec.3.5), for

the{jK?)vsﬁzidata for hexane and flexane, T~200K.

Hexane Flexane
RE n(@)/mPa s 3.47 1.58
RMSD/mPa s 2.056 2.030
Hess n(g)/mPa s 2.95 1.52
. Th' /ps 21.6 16.2
k g.868 g.699
RMSD/mPa s g.9069 2.920
A /10 °wpa &% @.690 g.284
RMSD/mPa s @.259 d.879

From figs.6.3 and 6.4 and the RMSD's it is clear that the
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KG square root law is particularly poor at predicting the fKZL
behaviour. In hexane the KG curve shows a systematic and
large deviation from the computed points. In flexane the
deviation™is not as large because of the smaller amount of
shear thinning but there is still a tendency for the data to
lie systematically above and below the line. Indeed, the
shape of the n(¥) vs.¥y curves is much better represented by
the Hess and RE fits. In terms of the RMSD's there is little
to choose between these two in either case although it has to
be said that there is one additional adjustable parameter in
the Hess prediction. 1In flexane both give similar estimates
for n(@¥) but in hexane there is a substantial difference of
~@.5mPa s, There is then a good deal of imprecision in any
result quoted for the n(@) of hexane. This is compounded if
we use the criterion of Allen and Kivelson [70] who choose
those data points which fit to the Zf, law to estimate the
¥=@ viscosity, reasoning that at high shear rates a
'saturation effect' causes the viscosity to diverge from the
square root dependence. If this same criterion is applied to
the lowest three shear rates for hexane and flexane further
estimates of the zero shear rate viscosity can be obtained of
~4.1lmPa s and 2.9mPa s respectively. Consequently the n(@)'s
of these two fluids are quoted as 3.5+@.6mPa s and

1.7+0.3mPa s for hexane and flexane respectively.

Despite the uncertainty in the estimates of the

equilibrium viscosities there is still a relatively large
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difference between the values for the two systems. It must be
concluded that the flexibility of a molecule is a significant
factor in determining this the most fundamental of rheological

properties.

6.4 Shear Induced Alignment

In figs.6.5—>6.8 the data given in table 6.4 is plotted
as a function of the square root of the shear rate.
Qualitatively the same behaviour is found in hexane and

flexane as in all the other models previously studied withlbxzf

E 1 1 i i = v +7.
and‘nxx increasing whilst Dyy and pzz decrease with Dyy fgg

This shows the expected alignment, for the type of shear

applied, of the 'long' axis of these molecules in the XZ
plane. For all the the components of D there is a tendency
for the greater change to occur in hexane implying more
alignment of the ryg vectors in hexane than in flexane.
Significantly the magnitudes of the changes in these
components are larger for these molecules than for the
diatomics and triatomics. A likely result considering the
greater anisotropy of these polyatomic models but not an
obvious result because of the demonstrated density dependence
of 2(2). One further interesting point is that’szﬁZ) passes

through a maximum in both cases at a shear rate of about

10“s" . This has not been observed before but the

possibility of it happening has already been discussed in

sec.3.7.
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The ability of sz to pass through a maximum does not
make it the best indicator of the amount of alignment in the
system. A possibly better, and more experimentally relevant,
measurement is afforded by the extinction angle,igqf which is
a function of the off and on diagonal elements of 2, as
defined in eqgn.3.7.2. The shear rate dependent values of the

extinction angle, ©g4(»)Y<, are given in table 6.6.

Table 6.6 The extinction angle obtained from the steady

state shear calculations on hexane and flexane at T~200K.

Hexane Flexane
#10%%7 8e/deg oe/deg
1 36.4+1.7 -
2 33.8+1.5 31.6+3.1
5 26.6+1.2 28.5+1.4
19 23.7+1.1 27.1+41.5
20 19.6+1.6 22.5+1.5

In fig.6.9 eety) is plotted as a function of the square
root of the shea;if;;e along with the predictions of Hess's
theory for this property which is given by eqn.3.7.3 in the
first approximation. The values of T being taken from the
best fits to the viscosity data given in table 6.5. To first
approximations Hess's theory fails to predict any change in
Dyy under shear and so not surprisingly does not do well at

predicting the form of'eeﬁdr, as was the case with diatomics.

In comparison hexane and flexane show very similar behaviour
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Figure 6.9 The extinction angle ©,(¥) vs. ?”. hexane
(0) and flexane (A), T~200K. Comparison
with the prediction of Hess's theory,

hexane (——) and flexane (- - -).
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forfee(?) with hexane having slightly lower values at the

higher shear rates, again pointing to slightly more alignment

in hexane. This similarity in @g(¥). contrasts sharply with

the behaviour of n(¥) which shows significant differences in
both magnitude and variation with ¥ between hexane and
flexane. This again could be construed as an indication of

the looseness of the coupling between stress and molecular

reorientation under shear.

As with the diatomics the probability densities for the

direction cosines, {Da} «=x,¥,2, have been calculated using

the definitions and methods described in sec.3.7, except that
for these molecule5<£131 has been substituted for‘ii.

Figs.6.10 to 6.11 show these functions at the highest shear
1

rate used of gggffgi; . There is considerable distortion of
the probability densities away from the equilibrium

distribution of‘p(m9=1, for all values of.Da, especially in

the case of Dx which shows a very strong tendency for

alignment to occur along the x-axis. The‘p(Dy) and p(Dz)f are
consistent with this streaming of molecules in this direction,
as discussed in sec.3.7. These functions also underline the

similarity in the behaviour of the orientation under shear of

hexane and flexane as the difference in the {Knays are small.
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Figure 6.10 The normalised probability density for the

% direction cosine p(Dx)vs. Dx' hexane (a)

and flexane (b), ?=2*10115—‘, T~200K.
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Figure 6.11

The normalised probability densities for
the y direction cosines p(Dy) vs. Dy, (1)
and the z direction cosines p(Dz) vs. D_,
(2), hexane (——) and flexane (- - -),

y=2x10*'s”™ !, T~200K.




6.5 Non-equilibrium thermodynamics

With the rigid model molecules previously studied it has
been seen that the pressure and total energy are functions of
the shear rate. Although the findings for diatomics and
triatomics have confirmed a power law dependence of these
variables upon shear rate the actual exponent has tended to
fall below the value of 1.5 expected by theory [74,90]. The
introduction of flexibility into the model molecules means
that the change in total energy under shear at constant
temperature is no longer caused by the change in the
intermolecular potential energy alone. Internal
rearrangements of the molecules will cause changes in the
dihedral angle potential energy and the intramolecular
contribution to the LJ 12-6 potential energy. For this reason

two other functions, aP(¥) and M«()") defined as

A

, 200 = 0 - 00) - Es
a0 (5) = B (%) — &0) * . (6.5.2)%

where & is the total (inter + intra) LJ 12-6 potential energy

and ¢& is the dihedral angle potential potential energy, have
been calculated as well as AU(Y). and AP(¥) . Although ’% does

not contribute to the total energy in flexane,Aﬁa-has been

calculated for comparison with d@a for hexane. These

functions are given in table 6.7.
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o _(5)

Table 6.7 The functions AU(¥) ., AB(¥) , and |AP(3)|
obtained from the steady state shear calculations on hexane

and flexane at T~200K.

comparison only.)

( * indicates calculated for

Hexane

$/10'%7Y a0(5)/Imol™t ab(3)/Imol™t 188 (¥)/Inol t  aP(%)/bar
1 -150+140 1504130 -300+68  180+90

2 -220+80 210+70 -420+90 250+60

5 -210+110 550+50 -760+80 580+30
10 -60+140 840+70 -910+90 820+30
20 40+140 1420+90 ~1510+60 1300+70
Flexane _

$/10*%7 AU(?)/Jmo)™t  A®(¥)/Imel” :Mq(l?)/Jmol—l AP(¥) /bar
2 5498 5+98  -3204680  98+70

5 90+100 90+100 ~550+660 180+79
10 300+90 300+90 -1800+600 410+70
20 670+140 610+140 -1760+770 720+120

It can be seen from the table that the inclusion of the

dihedral angle potential has a marked effect. 1In flexane, and
the previous models used, AU(¥) is effectively the same as
M(y) because of the constraint of constant temperature. The
difference between the two at high shear rates being caused by
the slight temperature rise that occurs when the constant
temperature algorithm cannot remove all of the heat generated
by the flow. So as AQQ?Z increases(lggzl must increase in

flexane. 1In hexane Qu gives U an extra degree of energetic
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freedom so even thoughifgf?)ﬁincreases it turns out that.gggj)
does not increase because of the counterbalancing effect of
the decrease in '='A¢d(_7)f'. For this reason . jloglyo(AO()"-)/Jmof»l)

has been plotted against lngio(jZ}OlogiﬂX in fig.6.12 rather

than log, (AU(%)/Jmol”') . In £ig.6.13 _log, (AP()/bar | has
been pI;;;;giin the same way. The points at higher shear
rates are once again more precise because of the larger
differences from the equilibrium value of the energy and the
pressure. From the figures it can be seen that the points fit
reasonably well to the straight line form , at least at the
higher shear rates, expected for an algebraic dependence upon

shear rate of the type given in eqn.3.8.3 for the pressure and

by

; -1, _ . a0 —1 -1
iggio(Aﬁ(Y)/Jy?}gizi- cf}fg;gfr/lo s ) + l?gio(Gi/Jmol ) ]
or alternatively

' a0(3) = &,(3/10*% )¢

4 (6.5.3)

:wWhere @, is a state dependent éonstant, for the total LJ 12-6
potenti;l energy. The values obtained for the slopes from the
straight lines shown in figs.6.12 and 6.13 are given in table
6.8 along with the values estimated for the constants of

proportionality.
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Figure 6.12 Logt'bAO()") Vs-xa-loiiof’, hexane (—D—) and

<

" flexane (- - A - -), T~200K.
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Table 6.8 The slopes (a and c) and proportionality
constants (P1 and 01) for the fits of A»(y) and AP(y) to the

forms given in egns.3.8.3 and 6.5.3 from the steady state

calculations on hexane and flexane at T~209K.

P, /bar a A%QA/Jmol—l c
Hexane 224 g.59 165 g.72
Flexane 62 g.81 22 1.13

For both the pressure and the LJ potential energy hexane
shows the greater actual change in these properties under
shear but also a slower rate of increase. This behaviour
leads to the situation given in table 6.8 where Pl and@1 are
greater in hexane but a and c are less. All the slopes fall
well below the value of 1.5 demanded by theory even allowing
for the large uncertainties there is in the data. It appears
that from this, and the earlier data on diatomics and
triatomics, that although an algebraic dependence of the
pressure and potential energy upon shear rate is a reasonable
approximation the actual exponent is certainly molecule

dependent and probably state dependent also.

The interesting finding that the dihedral angle potential
energy changes under shear in hexane is made more credible by
the fact that Aﬁé?) also decreases in flexane which, as no

forces derive from O& in flexane, indicates that even in a

model free of hindered internal rotation the shear flow does

impart a different influence on the structure of the molecules
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than at equilibrium. The conformational changes underlying

this phenomenon will be discussed in sec.6.7.

As with the previous models the pressure increase has
been resolved into its component parts. This has been
achieved in this case by calculating the functionSIAR&é?Y

defined as

AP S PGP - PO)- ey (6.5 -

where

IP@) = (B £ P (N HPL()/3 . - (6:5.5)

This differs from the definition given previously, egn.3.8.5,

as in the hexane and flexane calculations P(y) derives from

the stress tensor which is averaged over the period for which

mﬂgz{ appears to be at steady state whereas P(¥)' is averaged

over the period shown in table 6.2 The functions;Aﬂ*#?); are

given in table 6.9.
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Table 6.9 The functions{AﬂmJ?)}as defined in egn.6.5.4 from

the steady state shear calculations on hexane and flexane at

T~200K.
Hexane
310%™ PG)/ber AP (M)/bar AP (3)/bar AP, (F)/bar
1 690+80  20+118  -79+116  50+100
2 800+30 -80+70 ~60+40 130+40
5 1130+30 -230+90 -160+70 390+80
10 1370+70 -370+120 -50+90 420+100
20 1850+80 -620+90 ~40+130 650+120
Flexane
9/10*%7 BG)/bar AP (9)/bar’ &P (3)/ber &P (¥)/bar”
2 360488 -60+120  -10+118  70+110
5 460+90 ~118+110 -50+140 160+120
10 590+100 -250+140 -50+149 290+150
20 860+15¢0  -380+190 -80+190 460+210

These functions show a clear trend in the normal pressure
components which is in general ;Pxx()")<P(}")1 ' Pyy()")ﬁP(i) and

/Pzz(i')>P(>") . This is the same behaviour found in the chlorine

systems at high density which implies that this is the more
typical reaction of dense fluids to this kind of flow whereas
the different trends found in the ethane and propane case are

probably characteristic of a low density high temperature

fluid.
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6.6 Shear Induced Intermolecular Structural Changes

The modified fluid structure which underlies the changes
in pressure and intermolecular energy have been probed in the
usual way by calculating distributiion functions. Apart from
the normal r.d.fs g(r) and G(R), for the individual sites and
the centres of mass respectively, a directional distribution
function for COM separation has been calculated and also the
orientational cross correlation function P;(R) defined in

sec.5.6.

In figs.6.14 and 6.15 the g(r)s and G(R)s are given for
hexane and flexane at the highest shear rate of-{j;zgyffgii
together with the same functions at equilibrium. These
functions are scalar so are not ideal for probing this highly
oriented structure which is obviously present from the results
for the alignment tensor. Nevertheless, there are some
changes in the r.d.fs. g(r) shows a slight tendency for the
height of the first peak to increase in both cases but is in
general very similar to the equilibrium g(r). However, the
G(R)s show a much greater change as the first peak is reduced
in width, increased in height and is moved slightly to smaller
values of R.The second peak for hexane, which is difficult to
discern at equilibrium, is made more distinct by the shear
flow. These findings are consistent with the previously noted

changes in the energy and the pressure and also the alignment.
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Figure 6.14
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Figure 6.15
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To try and understand more about the intermolecular
rearrangements under shear directional distribution functions,
{G(«).}, have been calculated. In the x direction G(X) is
defined as the mean number of molecules which satisfy the

following three conditions for the COM separation vector

By (Ry5Yi5p2iy)  i-
i) X < |Xjj] < X+aX
ii) Y550 < 872
iii) 1Z; 51 < s/2

divided by the expected number of molecules in this region if

the structure was entirely random i.e. 2 Zax N/V . This gives

a measure of the relative probability of finding another
molecule, j, at a separation X in the x direction in a column
of cross-sectional area 8$%S) centred on the COM of molecule i.
The dimension § is arbitrary but if 8§ is large, say, compared
to the size of a molecule then molecules are counted which may
have a small x separation but are in fact quite a distant
apart and, therefore, uncorrelated. On the other hand if:Siis
too small then the statistics become poor because of the small
numbers of molecules. To try and avoid these pitfalls a value
of §=5.®K was chosen as a compromise. Even so the results
shown in figs.6.16 and 6.17 for all three directions, for

hexane and flexane at the highest shear rate of LZEZ*Hflgfl,

are still prone to a significant amount of statistical noise

even after being averaged over the entire time the system was
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Figure 6.

Figure 6.
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The directional distribution functions for
the separations of the COM in the three
orthogonal directions G(x) vs. «, for

=X (=——), =Y (—+=) and o=Z (- -), hexane
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f,§§JP9§§E,t° be at a steady state. Nevertheless these functions
reveal some interesting features about the distribution of the
centres of mass. From the figures it can be seen that G(Y)
and G(Z) have the 'usual' r.d.f. type structure with the main
peak at a separation of around lo and subsequent peaks
diminishing in height at 2o and 3o. G(X) shows a very
different form with no peak at all at lo just a gradual rise
to a broad peak around 2c. This is consistent with the result
from the alignment tensor since as these molecules align along
the x-axis much of the columnal region in front, or behind, of
the COM of a molecule in the x direction is taken up by sites
of its own chain forcing the COM of other molecules to be more
distant. In the y and z directions molecules lie parallel to
one another to a large extent, thus, the relatively narrow
peaks at 1lo. These observations also explain the changes in
G(R) which occur under shear. The narrowing of the first peak
in G(R) results from contributions in the y and z directions

and the more pronounced second peak results not only from G(X)

but also the distinct structure seen in G(Y) and G(Z).

The results for jhgﬂz are shown in figs.6.18 and 6.19
once again for the highest shear rate used along with the same
functions at equilibrium, for hexane and flexane respectively.
With a preferred orientation in the system the large R value
oflfhggy increases from that of 1/3 for a random distribution
of orientations as found at equilibrium. The tendency is for

molecules to be parallel in a sheared fluid so the angle
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Figure 6.18 P,(R) vs. R, hexane,
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Figure 6.19 P, (R) vs. R, flexane,

-1

y=2%x10*s™! (—) and $=0 (—-), T~200K.

et

0.9 |

P1(R)




between the r;g vectors of different molecules, ©jj, tends to

zero and thus Py;(R) , which is a function of coseij*increases.
It can also be seen that there is some movement of the peaks
in EESR) to smaller R consistent with the results for the G(R)

and the »J}(a)s.

6.7 Shear Induced Intramolecular Structural Changes

It has been generally assumed that shear flow will tend
to increase the average length of flexible molecules [128] but
it has never been directly observed in real systems. One
previous paper [99] discussed the results of NEMD experiments
on a model of flexible propane but no significant change in
internal structure was observed. With the longer molecules
used here noticeable changes have been found to occur in the
mean intramolecular separations of sites, fb$={f1§§gﬁg, and

the root mean square radii of gyration, ég = <(§ai—l_li)2>” '

which must ultimately stem from the effect of the shear flow

upon the distribution of conformers and dihedral angles.

In the models of hexane and flexane used here the
distances between neighbours and next neighbours are rigidly

fixed so the mean separations which can vary are’ dy (=<|Iry4l>

? ' S -
dyg, dyg + dzs, dpg and dag. Only computationally is site 1

distinguishable from site 6 etc. so the actual quantities

quoted are calculated from :-

dyg = (dyy + dpg + dge)/3 - (6.7.1)
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dig = (dyg + d2g)/2

dyg = dy

8y = (31 + Se)/z
s, = (8, + 8g)/2
1s3 = (sg + 84)/2

- /'.

(6.7.2)
4 (8.7.3)
. (6.7.4)
| (6.7.5)

1'.gsJL§f

These functions are given as a function of shear rate in

tables 6.10 and 6.11

Table 6.19 The shear rate dependent mean intramolecular

separation of sites,

daB(y)J as defined in eqns.6.7.1—6.7.3,

from the equilibrium and steady state shear calculations on

hexane and flexane at T~200K.

Hexane

10 -1

¥/10""s ©
%]
1
2
5

10

20
Flexane
7/10103 +
]
2
5

19

20

dy4(¥) /4

3.582+0.004

3.614+0.002

3.628+0.006
3.654+0.006
3.671+0.003

3.701+0.001

44 /R
3.392+0.010

3.404+0.007

3.421+0.010

3.430+0.008

3.442+0.012

"dyg(») /R
4;g;;iﬂ.ﬂﬂ4
4.668iﬂ.ﬂﬂ3
4.687+0.008
4.712+08.007
4.731+0.005

4.778+0.001

'dzégf)/ﬁ
4.409+90.998
4.426+0.008
4.444iﬂ.ﬂll
4.459+0.009

4.473+0.014
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/A
5.569+0.007
5.663+0.011
5.701+0.014
5.790+0.0815
5.843+0.009

5.913+0.001

/R
5.197+0.024
5.225+@.021
5.270+0.024
5.302+0.021

5.340+0.026



Table 6.11 The shear rate dependent root mean square

radii of gyration,

from the equilibrium and steady state shear calculations on

8q(”) as defined in eqns.

hexane and flexane at T~200K.

Hexane

$/10'%7"  s4()/A =201/8  18(/A

7] 2.862+0.9003 1.873+0.002 @3.900+0.013
1 2.901+0.004 1.867+0.002 @.898+0.005
2 2.916+0.006 1.870+0.093 @.890+0.0@5
5 2.950+0.006 1.862+8.002 0.888+0.004
10 2.971+0.995 1.861+0.002 0.883+0.003
20 3.000+0.002 1.876+0.001 0.861+0.003
Flexane

2101%7Y 8 /4 823 /& sa(»)/R

[’/ 2.690+0.012 l:é47tﬂ.ﬂﬂ9 © ©.931+0.009
2 2.703+0.009 1.848+0.007 @.928+0.007
5 2.723+9.011 1.843+0.007 3.929+0.009
10 2.737+0.9010 1.845+0.009 3.924+0.011
20 2.752+9.013 1.841+0.006 0.924+0.009

6.7.4—6.7.6,

As a measure of the elongation of a molecule the mean
separation of sites is a better indicator than the root mean
square radii of gyration as in all cases E@B is a maximum for
the all trans conformer whereas this is not so for the ffg}.
The reason for this is that the COM does not necessarily, and
in general will not, lie on the molecule. If, for example, we

consider the case of an all trans conformer with o0 for all
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the three dihedral angles the COM lies midway between sites 3
and 4 and so 83 will be equal to half the bond length i.e.
@.7658. So this case represents the minimum possible value

for ss. This explains the data in tables 6.1¢ and 6.1l where

it can be seen thatfgég*increases with shear rate in all cases
but onlyisl’consistently increases and‘ggfin hexane noticeably
decreases. All these results can be interpreted as deriving

from an overall elongation of these molecules under shear.

To compare this effect in hexane and flexane a percentage
extension in d;g' has been calculated as

'Adyg(¥) = 100%(dyg(¥) - dyg(0))/dyg(0) (6.7.7

and the results are given in table 6.12.

Table 6.12 The function MAd,e(¥), as defined in eqn.

6.7.7, from the steady state shear calculations on hexane and

flexane at T~200K.

Hexane Flexane

910t% M) Bdye()

1 1.69+0.23 -
2 2.37+0.28 0.55+0.61
5 3.97+0.30 1.41+0.65
190 4.92+@.21 2.903+0.61
20 6.18+@.13 2.74+0.68
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Figure 6.20 The percentage change in the mean end-to-
end separation Ad,g(¥) vs. 7“, hexane ()

and flexane (4), T~200K.
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In fig.6.20 7491§£ZZ is plotted against the square root of
the shear rate. At first sight there appears to be a paradox
in that the more flexible molecule is extended less than the
more rigid molecule under shear. Indeed the ~6% extension of
hexane over its equilibrium length is well over twice that of
flexane.This can be explained by considering the energies of
the various configurations of the molecules. In hexane the
all trans conformer is by far the most energetically
favourable because of the overwhelming influence of the
dihedral angle potential. Moreover, once in the TTT state it
is kept closer to its maximum length by the steepness of the
potential thus in turn maximising d;g . In flexane the all
trans conformer does not coincide with that of lowest energy,
as can be seen from fig.5.12 in sec.5.7. This is caused by a
combination of the intramolecular LJ interactions which mean
that the minimum energy conformer in flexane has an rig of
about 5.0&. Thus, an increase in d;¢ in flexane causes an
increase in the intramolecular energy. This ihcrease in
energy is small, because of the nature of the potential,
compared to the large decrease in intramolecular energy that
occurs when a hexane molecule undergoes a transition from one
of the conformers containing a gauche state to an all trans

conformer.

To see this in more detail the probability densities for
the distribution of r;g's and dihedral angles have been

calculated and are shown in figs.6.21 and 6.22 for the highest
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Figure 6.21 The probability density for the end-to-end

separation e(r,g) vs. ryg, hexane (1)

-1

and flexane (2), ¥=2%10'*s™' (—) and

=0 (—-), T~200K.
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Figure 6.22
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shear rate along with the same functions at equilbrium. For
the dihedral angles the probability densities show a clear
trend towards more trans states in both hexane and flexane.

To compare these changes further the difference between the
probability densities at ¥=0 and )'rzztlouf;t A ﬁe(g), has been
plotted in fig.6.23 for both hexane and flexane. The function
clearly shows the greater changes which occur in hexane as the
numbers of angles in the trans state increases at the expense
of those in the G4 and G- state. Flexane shows a less well
defined change but theréiis still a discernible tendency for
the dihedral angles to take up values around the trans and cis
angles g=ﬂ°and 18¢° which gives rise to more 'flattened'
molecules. This is confirmed by the general trend to larger
values of r,g shown in fig.6.21 for flexane with the retention
of a peak a£7r15~5.0A corresponding to the CTC and TTC
conformers. For hexane fig.6.21 shows an approximately 30%
increase in the number of TTT conformers largely at the
expense of the G,TG. and GTT conformers. The numbers of TGT
conformers remains almost unaltered by the shear. Why this is
so is not clear but from the equilibrium results it is known
that transitions in o, the central dihedral angle , are if
anything slightly less frequent than those in the outer
angles. It could be then that it is easier for the outer
gauche angles in the 9}??— and GTT conformers to undergo
transitions to form TTT molecules than it is for the central

angle of a TGT conformer to do the same.
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Figure 6.23 The difference between the probability

densities for the dihedral angle Ap(x) vs.

=1

«, at 7=2*10115 and =0, (a) hexane

and (b) flexane, T~200K.
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6.8 Self Diffusion

The one dynamic property most likely to be affected by
the shear flow is the self-diffusion through its connection
with the viscosity which has been shown to be a strong
function of . It would be expected that as the viscosity
fell the diffusion would increase and this has been found to
occur in monatomic fluids [1]. With the shear flow
directionality imposed upon the system it is by no means
certain that diffusion will change isotropically especially
with the already observed high degree of alignment in the

system.

To monitor any changes in the diffusion and to see how
anisotropic they are the diffusion coefficients in the three
orthogonal directions of the laboratory frame have been

calculated from

2

t j :
IDx = limt*” < [ I(Vx(s) - ¥YZ(s)) dS'] >/6t : *ik‘ 15.8.‘7
S e o o - . e
and
t 2
Dy = lim, o < [I(v“(*’) ds] >/68 X=Y,Z ’ _(6.8.2)
A

where __T'gf:(vx,vy,vz)r and ,1_3=(x;Y,Z)1_ are the velocity and position

of the COM of a molecule. The definition in eqn.6.8.1

accounts for the fact that Vg contains a contribution from the
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net shear flow in the system which must be subtracted before
calculating the diffusion. As in sec.5.9 the diffusion
coefficients perpendicular and parallel to ;ﬁi have also been
calculated from the integrals over the correlation functions
given in egqns. 5.9.5 and 5.9.6. Once again making the same
adjustment to Vy! as in eqn.6.8.1. 1In table 6.13 the
self—diffusion*;oefficient, D, which from.eqns.6.8.l, 6.8.2
and 5.9.3 is given by the sum of BE:SQ énd?#%ﬂ is given along

with its resolution in to the laboratory frame, the ratio of

Mnﬁﬁﬁiﬁ‘ghd also the product of the diffusion coefficient and

the V{scosity at the particular shear rate.
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Table 6.13 The diffusion coefficients D,Dy,Dy,Dz, as

defined in the text , the ratio JhMDl; and the product
D(¥)n(¥) for hexane and flexane from the equilibrium and

steady state shear calculations at T~200K.

Hexane
) D Dy A

) [ /10 ‘w's - g ——a
7] g.35 g.12 g.12 g.12 1.32 1.23
+0.02 +0.01 ‘iﬂ.ﬂl +0.01 +0.23 +@.22
1 3.43 g.15 g.15 g.15 1.33 1.26
iﬂ.@3 16.63 iﬁ.@3 +0.93 iQ.25 iﬂ.Zl
2 g.00 g.22 g.18 g.18 l1.61 1.49
iﬂ.09 i@.@4 i@.ﬂ4 +0.04 +9.19 +0.23
5 1.06 g.45 d.29 g.29 1.40 1.59
iﬂ.ﬁ7 iﬂ.ﬂ? iﬂ.ﬂS iﬂ.@3 iﬂ.l? i0.15
190 2.900 1.87 3.50 g.50 .1.31 1.79
iﬂ.l2 +0.16 +0.09 +0.09 +0.11 +0.11
20 3.39 2.5 d.64 g.64 1.54 1.93
16.69 iﬂ.63 iﬁ.l@ iﬁ.lﬂ iﬁ.lz iﬁ.4ﬁ

Flexane
ey n: D ) 0 W
yno*%t D Dy s Dy/dy  Dn/pN.

e 7/7719,,,1! 8§ ————epy —

7] g.53 g.17 g.17 @.17 1.04 3.90
i@.lﬂ iﬁ.ﬂ6 +0.06 +0.06 +9.99 i0.23
2 g.88 g.32 @.20 g.32 1.11 1.26
i@.ﬂ8 iﬁ.ﬂS iﬁ.@B i@.ﬂS iﬂ.l4 iﬂ.32
5 g.98 d.46 2.25 g.25 1.76 1.04
iﬂ.ﬂs +0.03 +0.43 +0.03 iﬂ.54 +0.13
19 1.97 @.89 g.38 g.83 1.79 1.59
iﬂ.lﬂ iﬂ.lﬂ iﬂ.ﬂG iﬂ.lﬂ iﬂ.l? iﬂ.lS
20 2.42 1.94 g.41 g.88 1.17 1.35

+0.12  +0.07 +0.07 +8.07 +8.07  +08.13

The data in table 6.13 is consistent with the well known

experimental finding that a reduced viscosity is indicative of
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the enhanced diffusion of molecules in the fluid. Although
this is generally applied to the case of changes in viscosity
caused by changes in temperature and/or pressure it seems also
to hold for the case here of an increase in shear rate. The
degree to which an inverse relationship holds between the
viscosity and the diffusion can be judged from the product Dm,
given in table 6.13. In hexane DN gradually increases with
shear rate but only by a small amount compared to the factor
of almost ten increase in the diffusion coefficient. 1In
flexane 'Dn does not show a consistent trend but is again
reasonably constant considering the fivefold change in D.
These results bear out the strong correlation, though perhaps
not 1l:1, between the fluidity, 1/mn, and the diffusion

coefficient.

In hexane there is a clear tendency for the diffusion to
be enhanced much more in the x-direction than in the y- or
z-directions , which within errors have the same coefficient
at all shear rates. In flexane the trend for Px and Dy is the
same but the behaviour of D, appears much more erratic as it
‘oscillates' between the véiﬁes'for DK and,D&: This could be
due to a lack of averaging but it seé;s likézy that there
maybe a different trend in flexane. From the directional
structures of the fluids, given in figs.6.16 and 6.17, it
might be expected that diffusion would be different in the
x-direction but their is little if any indication that

diffusion in the z-direction should be any different from that
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in the y-direction in flexane as the density distributions are

very similar.

One other point that can be drawn from table 6.13 is that

the ratio .D“/Ql  does not show a systematic change with shear

rate in either case. As has been shown diffusion is enhanced
in the x-direction under shear which coincides with that of

the preferred orientation of the r;g vector of the molecules

(sec.6.4). It would seem logical then to assume that
diffusion parallel to [1;«would also be enhanced but this
appears not to be theAéése. There is, of course, still a
distribution 6f orientations even at the highest shear rate
(see figs.6.19 and 6.11) which means that there is a
proportion of molecules with ryg far from being parallel to
the x-axis. What the data inﬁ;;ble 6.13 implies is that the
diffusion of these molecules is increased more than those with
their ryg vectors almost parallel to the x-axis. This would

have to be the case for 'D"/Dl to remain low whilst the degree

of alignment continued to rise.
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6.9 Conclusions

These results clearly demonstrate the marked effect the
flexibility of the molecules can have upon the rheological
properties, structure and dynamics of a fluid. It has been
shown that although thermodynamically very similar at
equilibrium their intramolecular dynamic properties differ
significantly which in turn affects the diffusive and
reorientational motion of the molecules. When sheared this
effect manifests itself most notably as a difference in the
zero shear rate viscosity. It is also found that the
non-Newtonian behaviour of these fluids, in particular n(¥)
and l%?}, which are of considerable practical importance,
cont;ast quite sharply with hexane shear thinning to a larger
extent and also showing more ‘'dilatancy'. It is also believed

that for the first time the extension of molecules under shear

has been demonstrated in a convincing manner.

An important aspect of the comparisons between the two
fluids is the fact that in terms of the intramolecular
potential flexane represents the high temperature limit of
hexane So not only are the differences between two molecules
of varying flexibility, at a similar state point, being probed
but also the likely variation in the rheological properties of
a molecule as a function of temperature. This assumes that at
constant density the effect on the rheological properties of

an increase in temperature is small in those molecules which
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do not have barriers to internal rotation.

It was, thus, proposed that further calculations be
carried out at an elevated temperature. These would reveal
directly the effects on temperature on the rheological
properties of molecules with internal barriers to rotation and
also determine to what extent these effects are predictable
from comparisons between molecules with differing
flexibilities. Furthermore, as the transition rates for
conformational changes were rather slow at 200K it was not
possible to determine the effect of shear upon these
properties, hopefully the increased temperature, and hence
increased transition rates, might allow this effect to be

characterised.
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CHAPTER 7

HEXANE AND FLEXANE RESULTS AT 300K

7.1 Introduction

The temperature chosen of 300K was again largely
arbitrary but it was realised that to see a noticeable change
in the rates of conformational transitions a substantial
increase in temperature was required. By increasing the
temperature to 300K the barriers to internal rotation are
effectively reduced by a factor of 1/3. It was also suggested
that further calculations might be useful at a point close to
the zero pressure isobar at a higher temperature so as to
compare the effect of increasing the temperature at constant
pressure and at the same time the effect of increasing the
pressure at constant temperature. This was never realised,
however, but the choice of temperature was made with this in
mind as at a temperature of 300K and a pressure close to zero
one could be reasonably confident that the model fluid would
still be in a dense liquid phase. It also corresponds to the
temperature regime at which most experimental data is obtained
and this offered the possibility of comparisons with real

n-hexane.
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7.2 Details of the Simulations

Equilibrium configurations of hexane and flexane were
obtained at 3@0K simply by taking the final configurations
from the equilibrium calculations at 200K and applying the
constant temperature algorithm described in sec.2.15. As no
change was made in the density the pressure rose rapidly,
within @.5ps, in both systems to values ~2kbar and the
relaxation of the other state variables was equally rapid.
Even in hexane the dihedral angle energy rose to the level of
its average equilibrium value on a similar time scale.
However, to allow for any long time relaxation in the
distribution of conformers and dihedral angles the first 24ps
of the equilibrium run were not included in the averages of

any of the properties calculated.

Having obtained equilibrium configurations at 300K shear

rates of 2,5,10 and 20%x10'% '

were applied to the hexane
system but only one simulation was performed on flexane at a
shear rate of ' @ggﬁ@jf. As before equilibrium configurations
were used as the starting points for the calculations at the
lowest two shear rates so as to observe the attainment of a
steady state. At the highest shear rates the final
configuration from the simulation at = y=5%10'%* was used to

reduce the amount of time required to achieve a steady state.
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7.3 Results at 300K

In table 7.1 the results are given for the mean
thermodynamic functions obtained from the simulations at 300K

for all the shear rates applied.

A comparison of the equilibrium data for hexane and
flexane at T~30@K with that at 200K (table 5.1) underlines the
basic similarity of the fluids as the temperature rise
increases the pressure in both systems by ~l.8kbar and the LJ
12-6 potential energy by ~2.6kg4@g:j. The pressure increase
is much greater than that expected purely from a change in the
temperature,1}0&£@[Yﬂ¥nggj, emphasising the dominance of the
potential contribution. In other words the pressure increase
is not caused directly by the molecules moving faster but as a
consequence of the increased kinetic energy there is greater
penetration of the repulsive core of the interaction sites
which gives larger forces between molecules and hence a larger

pressure.

In tables 7.2 and 7.3 further averages are given for the
significant components of the stress/pressure tensor and the
alignment tensor along with the resultant shear rate dependent

viscosity
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Table 7.1 The mean thermodynamic functions obtained from
the constant temperature simulations on hexane and flexane at

equilibrium and under shear at T~300K, p¥=0.33749. U=total

energy, ®=total LJ 12-6 potential energy, ¢i=intramolecular

contribution toggq\§&=total dihedral angle energy, * indicates

calculated for comparison only and the figures in parentheses

are the total duration of the simulation.

Hexane s
$/10%™* v ¢ & o T/K P/bar Length
——— /imol™ Amol™ /5 mo1 " /Jmol™* i

) -28879 -47660 -1469 7560 299.99 2379 36

+210 +90 +10  +120 +0.01  +20  (689)

2 -28820 -47630 -1450 7590 300.09 2409 198

+1390 +50 +10  +120  +0.01  +30 (120)

5 -28900@ -47540 -1440 7415 300.04 2520 198

+160 +70 +10  +140  +0.01  +50 (120)

19 -2891@ -47340 -1450 7200 309.11 2700 48

+90 +60 +20 +30  +0.01  +40 (69)

209 -28870 -46760 -14140 6670 39090.29 3180 48

+160 +90 +10 +90  +8.01  +40  (60)

Flexane
$/10*% 71U o o, o T/K P/bar Length
/ggpli ~/Jmol 1 7Jmol-" 7.111101_1 of run
- /ps

7} -35950 -47180 -1220 30820 300.00 2120 44

+60 +60 +1@0  +309  +0.02  +40 (44)

5 -35960 -47190 -1240 39450 300.03 2170 44

+80 +70 +10  +410  +0.082  +50  (55)
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Table 7.2 The mean shear stress,

resultant viscosity and

mean normal pressure components from the steady state

calculations on hexane and flexane at T~300K.

Hexane

¥/10*%*

2
5
19
20
Flexane
-1

$/10*%s

5

Ge/er  N/mbd'd Py/bar  Byy/bar
264+38 1.3l9iﬂ.l92 2415+31 2409i49
611+35 1.221+0.0780 2399+70  2455+67
87li30 0.87liﬂ.ﬂ3ﬂ 2402+1290 2674i48
1278+13 ©.639+0.006 2597+81 3153498
oxz/bar 11/??5,? Pxx/bar Pyy/bar;
512i62 l.ﬂ24iﬂ.l23 2042+72 2244175

?&zfﬁ??

2402460
2719465
3924445

3784+51

Pm/%&r4

2269+106

Table 7.3 The mean significant components of the

alignment tensor obtained from the steady state calculations

on hexane and flexane at T ~309K.

Hexane

$/10*% "

2
5
19
20
Flexane
$/10"%
5

D

Xz
0.101+9.911

0.167+0.017
0.197+0.007

£.199+0.013

D
Xz

@.165+0.011

Dyx~1/3
—g.ngiﬂ-@Zl
8.153+0.9019
8.196+0.926

0.247+0.023

Dxx-l/3

0.075+0.022
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D _=-1/3
R4 /
0.013+0.916
_gog73ig-gl7
—g.lﬂSi@-ﬂzl

-g0128ig0013

D —l.
Yy #3

-0.951+0.020

Dyp-1/3
0.001+0.014
-0.080+0.012
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7.4 The Shear Rate Dependence of the Viscosity

A comparison of the data in table 7.2 with that in table
6.3 shows that whereas the viscosity of flexane at a shear
10 -1
s -

rate of 5%x10 . is, within error, the same at 200K and 300K

there is a considerable reduction in the viscosity of hexane
at the lowest two shear rates when the temperature is
increased. Further interesting points to note are that the
behaviour of the viscosity of hexane at 300K strongly
resembles that of flexane at 200K and at the highest shear
rate hexane is slightly more viscous at 300K than at 200K.
These points are illustrated in figs. 7.1 and 7.2 where the
viscosity data for hexane at 300K is plotted with that of
hexane and flexane at 200K. The data at 300K has also been
fitted to the predictions of the theories discussed in
sec.3.5. The parameters for the best fits are given in table
7.4 along with the root mean square differences between the

data points and the fitted curves.
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Figure 7.1 n(y) vs. )"”, hexane T~300K (A) and

hexane T~200K ([J).
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Figure 7.2 n(y) vs. )"”, hexane T~300K (A) and
flexane T~200K (D).
2.0
[.5
I

7

®

Q i

S %

> .

2 : N
0.5 i
0.0 .

0 ! 2 3 4




Table 7.4 The best fit parameters and root mean square

differences (RMSD) for the predictions of the shear rate

dependence of the viscosity from the theories of Hess,

Ree-

the

are

Eyring(RE) and Kawasaki-Gunton(KG) , (see sec.3.5), for
_BQZ)VS-ZVdata for hexane at T~30@0K. The best fit curves

also plotted in fig.7.3.

RE n(g)/mPa s 1.41
Te /ps 26.90
RMSD/mPa s 3.837
Hess n(g)/mPa s 1.38
Th /ps 11.1
kK 9.632
RMSD/mPa s 0.930
KG n(%)/mPa s v 1.68
A /10 °wPa s - @.236
RMSD/mPa s 2.049
The ability of the various functional forms to predict
the behaviour of the viscosity follows a similar pattern that
has been observed before at the lower temperature for hexane
and flexane and for the other systems studied. The Hess, RE
and KG predictions give reasonable fits but the KG square root

law

shows a slight tendency to systematically deviate from the

data points. From the estimates of N(@) given in table 7.4

the

zero shear rate viscosity for hexane at 300K is quoted as

1.5+@.2wPa s, This compares with the value quoted for flexane

at 200K of 1.7+@.3mPa st So if anything hexane is slightly

less viscous at 300K than flexane at 200K. From the relevant

constants Te, Tp, k and A in tables 7.4 and 6.5 and figure 7.2
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Figure 7.3 n(y) vs. ?”, hexane T~300K (A). Fits to
the predictions of the theories of Hess
(—), Ree-Eyring (- - -) and Kawasaki-

Gunton (—:-—-=).
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it can also be seen that hexane at 300K shear thins to a
lesser extent than flexane at 20@K. How this behaviour
contrasts with that of flexane at 300K is difficult to say on
the strength of the results at just one shear rate. However,
as this point is at the lower end of the scale of shear rates
used, which from the hexane results is likely to show more
variation with temperature, and does not show much change from
the result at 200K it would be reasonable to assume that
hexane at 300K and flexane at 200K and 390K all showed very

similarijgf) behaviour.

7.5 Shear Induced Alignment

As with the viscosity the significant components of the
alignment tensor , given in table 7.3, show a shear dependence
more akin to that of flexane at 200K than hexane at 200K
(table 6.4). This is also the case with the values of the
extinction angle, given in table 7.5, derived from the
components of D and shown in fig.7.4 with those for hexane and

flexane at 200K.
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Figure 7.4 The extinction angle 6,(¥) vs. 7“, hexane

T~300K ([]), hexane T~200K (A) and flexane

T~200K (V).
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Table 7.5 The extinction angle obtained from the steady

state shear calculations on hexane and flexane at T~390K.

Hexane Flexane
¥/10*%™* 8 /deg 8e/deg
5 27.6+3.2 36.8+4.5
10 27.0+2.2 -
20 23.742.5 -

At the lowest shear rate studied at 300K the imprecision
in the results for D made bg indeterminate. For flexane at

300K and jgﬁ*ﬂﬁos—ﬂ. Dx;’has , within error, the same value as

flexane at 200K and hexane at 309K but the on diagonal
components are less affected by the higher temperature and
consequently the extinction angle is significantly higher in

comparison.

7.6 Non-equilibrium thermodynamics

At the lower temperature the functionsigm(?),}fﬁg?{,
'f&é?% and AP(¥) were calculated to show the effect of the
shear flow upon the energy and the pressure of the system. As
it is of interest to see the effect of temperature on these
important rheological properties the same functions have been
calculated from the data obtained at 300K and these are given

in table 7.6.
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Table 7.6 The functions AU(Y), A®(Y)., &8 (¥). and AP(¥)
obtained from the steady state shear calcula;ions on hexane
and flexane at T~3@0@WK. ( * indicates -“calculated for
comparison only.)

Hexane

9/10*%7™" AU(3) /ol a8(¥)/Imol”t M (¥)/Imol” | aP(¥)/bar

2 50+240 30+109 20+179 40+40
5 -30+260 120+110 -150+180 150+50
19 -40+230 320+119 - -360+130 330+50
20 10+269 900+1290 -909+150 810+50
Flexane

$/10*%s™" <aU($)/Imol™"

A0(¥)/Imol * ma(y)/Jmof* _AP(¥)/bar

5 -10+100 ~10+100 -380+510 40+60

For hexane éggfz,shows no systematic trend as the
increase in the LJ potential energy is balanced by the
decrease in the dihedral angle energy. The magnitude of the
energy and pressure changes are decreased at this higher
temperature so that they closely resemble those found in

flexane at 200K.

In figs.7.5 and 7.6 the logarithm ofAfgx?I'and /8P(¥); are
plotted against the log. of the shear rate. The data points
fit well to straight lines and the adjustable parameters
resulting from fits to the forms given in egns.3.8.3 and 6.5.3

are shown in table 7.7.
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Figure 7.5 LogloAO()") vs. log“))", hexane, T~300K.
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Table 7.7 The slopes (a and c¢) and proportionality
constants (g! andifi) for the fits of‘AQKZ! and m@f?&ito the
forms given in egns. 3.8.3 and 6.5.3 from the steady state
calculations on hexane at T~300K.

P, /bar a ?1/ngﬂ:},c

Hexane 16 1.31 12 1.45

A comparison with same parameters derived from the
results at 200K (table 6.8) reveals that a has increased from
@.56 to 1.31 and c has increased from @.72 to 1.45 which is an
approximate doubling of these exponents. However, the
substantial decreases in the constants‘ff and @, from 224 to
16 and from 165 to 12, respectively, offsets the increases in

the exponents.

These results show that the effect of shear on the energy
and pressure is particularly sensitive to the temperature. As
the pressure and energy are themselves more a function of
density rather than temperature it is likely that the
parameters given in table 7.7 will also show even larger

variations with density.

The resolution of the pressure increases into the three

orthogonal directions by use of the functions { Aﬂxéil},

defined in eqn.6.5.4, is shown in table 7.8
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Table 7.8 The functionsuAﬂxJ?), as defined in egn.6.5.4,

from the steady state shear calculations on hexane and flexane

at T~300K.
Hexane
$/10°°57 “ap_ ()/bar  Tap ()/bar  aP, (7)/bar
2 10448 0+60  -10+70
5 ~130+90 ~70+80 200+80
10 ~300+90 -30+70 320+60
20 ~580+90 ~30+110 610+100
Flexane
#/10%%™ AP, (¥)/bar “ &P (¥)/bar aP__(¥)/bar
5 ~120+116  8@+118  40+140

The trends in the mlmamif)'s at 300K are the same as at
200K with only a small decreé;e in their magnitudes. This is
interesting as the actual change in7§KZl is noticeably less at
the higher temperature. So although the shear dilatancy is
certainly effected by the temperature increase it appears that
the normal pressure differences are relatively insensitive to
this change in the conditions. The indication from this is
that these two effects are more independent of each other than

might be expected since they both arise from changes induced

in the structure of the fluid by the shear.
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7.7 Shear Induced Intermolecular Structural Changes

At 200K the changes in the intermolecular energy and the
pressure were related to the distortion of certain
distribution functions under shear. As the pressure and
energy are affected in a similar way at the higher temperature
it is reasonable to suppose that the distribution functions
will also behave similarly. To check this the functions g(r),
G(R), g&gi;and ?}SEX, as defined previously, have been

calculated.

In figs.7.7 and 7.8 the radial distribution functions for
sites, g(r), and COM, G(R), are shown at a shear rate of
72?2*Hff§:? along with the same function at equilibrium.
Compariéon with figs.6.14 and 6.15 for the same function at
200K reveal a very similar trend with g(r) showing only small
changes whereas G(R) shows a general sharpening of the first

and second peaks and their movement to lower values of R.

For the directional functions, G(«), shown in fig.7.9 at
the highest shear rate, the rather poor statistics of these
functions makes detailed comparison difficult but it can be
seen that they are much the same as those obtained at 200K,
fig.6.16. This is consistent with the similarity in the APm&

at the two temperatures.

The function PESE) is shown in fig.7.18 at the highest
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Figure 7.7 g(r) vs. r, hexane,

y=2%10*s”! (—) and »=0 (—-), T~300K.
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Figure 7.8 G(R) vs. R, hexane,

9=2%10**s"! (—) and $=0 (—-), T~300K.
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Figure 7.9' The directional distribution functions,fgrz

the separations of the COM in the three
orthogonal directions G(«x) vs. «, for
=X (—), =Y (==) and «=Z (- -), hexane
y=2%101%s"!, T~300K. |
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shear rate and at equilibrium. At the higher temperature the
alignment tensor is not as affected by shear (table 7.3) and
this is shown by a smaller increase in‘jhﬁﬂ) compared to that

at ZQQK, figo6c ].8.

7.8 Shear Induced Intramolecular Structural Changes

At the lower temperature it was found that hexane waé
extended more than flexane by the shear flow. A rationale was
given for this but there was some slight doubt in the results
due to the general paucity of transitions in hexane. Indeed,
one of the reasons for performing these calculations at a
higher temperature was to check this particular result. The
decrease in dihedral angle energy with increasing shear rate,
noted in table 7.6, is already an indication that similar
changes are taking place as at the lower temperature. To
compare these further the mean intramolecular separation of
sites,,daBC?f‘, and the root mean square radii of gyration of
sites, Sgl¥), have again been calculated and are shown in

tables 7.9 and 7.14.
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Table 7.9 The shear rate dependent mean intramolecular
separation of sites, ?d&ﬁ(ﬁ), as defined in eqns.6.7.1—6.7.3,

from the steady state calculations on hexane and flexane at

255

T~300K.
Hexane
#/101%7 4y /R A5/A de)/R
-ﬂ 3.565+0.099 4.589+0.014 5.557+0.021
2 3.562+0.019 4.590+0.9010 5.559+0.9022
5 3.593+0.411 4.633+0.9012 5.629+0.039
10 3.592+0.9094 4.635+9.905 5.631+0.012
20 3.629+0.007 4.692+0.0929 5.706+0.024
Flexane
10*%7 . dgey/A dgg)/R aje(3¥/A
[/ 3.386iﬂ.ﬂlﬂ 4.389+0.907 5.174+0.013
5 3.398+0.099 4.403+0.9010 5.203+0.016



Table 7.10 The shear rate dependent root mean square

radii of gyration, /sg(¥) as defined in eqns.6.7.4—6.7.6, from

the equilibrium and steady state shear calculations on hexane

and flexane at T~300K.

Hexane

7107t (s, (/R 5209 /4 s3(9) /&

[/ 2.854+0.015 l:é4liﬂ.ﬂﬂ9 8.927+0.014
2 2.854+0.010 1.846+0.095 @.921+0.008
5 2.884+0.021 1.854+0.005 0.910+0.008
10 2.884+0.010 1.857+0.008 0.906+0.014
20 2.918+0.914 1.874+0.094 ?.885+0.011
Flexane |
310°%7 Cs0)/8 2(9)/4 ss(»/&

%] 2.683+0.097 1.837+0.005 @.ggggﬂ.ﬂﬂ7
5 2.695+0.008 1.837+0.006 ?.941+0.008

The equilibrium mean separations at 300K are less than
those at 200K (see table 6.19) for both hexane and flexane.
This is in agreement with the higher dihedral angle energies
at 300K which indicate more gauche angles and hence shorter
intersite distances. Thé d&éﬂs increase uniformly with the
shear rate as at the lower temperature but not to the same

extent.

The root mean square radii of gyration at equilibrium are
smaller at the higher temperature for sites 1 and 2 but are

greater for site 3, that closest to the COM. This is also

256



consistent with the existence of more gauche conformers at the
higher temperature for the reasons given in sec.6.7. Under
shear the tendency is for the molecules to become more linear

and this results in the trends seen in the sg(»)'s where 8y’

andT§2 increase and 83 decreases with increasing ¥.
To compare the magnitude of the increase in d,g with that
at 200K the function Ad,;g(?) , eqn.6.7.7, has again been

calculated and is given in table 7.11.

Table 7.11 The function ﬂ:si") + as defined in eqgn.6.7.7,

from the steady state shear calculations on hexane and flexane

at T~390K.

Hexane Flexane
91070 adie() 8dye ()]
2 0.04+0.54 -
5 1.30+0.80 @.56+0.40
10 1.3340.43 -
20 2.68+0.57 =

For hexane there is a noticeable decrease in the amount
of extension of the molecules compared to that found at 200K ,
table 6.12. Indeed, there is less extension in hexane at 300K

than in flexane at 200K.

More detailed information concerning the change in the

intramolecular structure is given by the distribution of
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Tye's, pulgl, and dihedral angles, qu} These functions are

-1

shown at a shear rate of 2x10* s and at equilibrium in

figs.7.11 and 7.12.

The.functiongjgflél clearly demonstrates the tendency for
the molecules to become more linear under shear by the sharp
rise in the peak at ~6.3% corresponding to the TTT conformer.
In contrast to the results at 200K the reduction in the
numbers of conformers containing gauche angles is more even at
399K. At the lower temperatures the number of all trans
conformers increased largely at the expense of the TTG
conformers whilst the numbers of TGT molecules remained
largely constant. At the higher temperature, although the
situation is not entirely reversed, there is certainly a
greater reduction in the peak at ~5.8%, corresponding to the
TGT conformer, than in the peak at ~5.28, corresponding to the

TTG conformer.

The change in f&g) on shearing, fig.7.12, also shows the
increased probability of trans states under shear. Compared
to the changes at 200K, fig.6.22, there appears less of a
reduction in the number of gauche angles. To quantify this
further the percentages of dihedral angles and conformers are

given in table 7.12 for hexane and also for flexane.
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Figure 7.11 The probability density for the end-to-end

separation p(r,g) vs. ryg, hexane,

y=2%x10*%s"* (—) and ¥=0 (—-), T~300K.
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Figure 7.12 The probability denmsity for the dihedral

angle p(x) vs. «, hexane,
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Table 7.12 The mean percentage of dihedral angles and

conformers from the equilibrium and steady state shear

calculations on hexane and flexane at ~399K.

$ of dihedral angles

Hexane
iys %'
(G T Y B T @t
o e b sl Gy
(/] 16.433.5 66.6+6.3 17.614.8 17.211.7 69.8+2.7 13.@12.7
2 18'5i4'9 66.1i6.4 15'5i5‘4 14'612'4 72.713.% 12'7i2’3
5 17'4i5°2 66.1+7.2 16.614.@ 12.8i4.ﬂ 76.4i4.ﬂ lﬂ.811.7
19 16.5+3.3 69.444.6 14.2+44.5 12.0+2.8 76.ﬂi1.7 11.912.1
20 15.@14.@ 72.1+5.6 13.@14.5 9.ﬂi2.4 81.0+1.9 1ﬂ.ﬁi2.1
Flexane
&3 %
& ; C e
G- T G-{s » .ﬁ.. T '{iﬁ%‘«' i
(/] 3ﬂ.ﬂil.5 38.711.5 31'5i2‘8 16.4i1.8 67.7i1.5 15.8iﬂ.4

5 29.7+2.4 41.1+42.6 29.2+2.3 16.8+8.9 67.1+1.3 16.2+1.3
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%2 of conformers

Hexane
TTT TTG TGT TGG TGG. GTG G4T6_ GGG Others
#/10%% S o

o 21.0 35.6 25.5 4.3 0.0 4 6.7 0.4 0.0
+2.5 +2.6 +3.6 +1.9 +0.0 +2.1 +2.8 +08.6 +0.0

2 23.7 35.2 22.7 4.0 0.0 .6 8.1 0.6 0.0
+4.0 +3.9 +2.8 +2.0 +8.1 +1.7 +3.2 +0.7 +8.0

5 27.1 36.0 18.8 4.2 0.8 6.6 7.2 0.6 0.0
+5.4 +5.4 +3.8 +2.3 +0.0 +2.4 +1.6 +0.6 +0.1

10 29.8 34.3 21.2 2.4 6.6 4.8 7.1 ©.3 0.0
+2.7 +2.2 #1.9 +1.3 +0.2 +2.3 +2.0 +0.6 +0.0

20 36.9 34.9 16.6 2.1 ©@.0 3.8 .3 0.2 0.0
+5.7 +5.8 +1.4 +1.3 +0.0 +1.3 +1.9 0.4 +0.0

Flexane
o o, TTT ~TTG TGT TGG TGG- GTG  G4TG- GGG Others
¥/10""s T -

o 5.9 26.5 12.4 12.8 1.5 17.6 17.7 4.8 0.9
+0.4 +0.4 +1.2 +@.3 +0.2 +0.8 +0.8 +0.1 +0.0

5 6.5 28.8 13.2 12.4 1.2 15.6 16.3 4.7 1.2
+0.8 +1.1 +1.0 +8.7 +0.2 +0.8 +1.3 +0.6 +0.2

The figures for the percentage of conformers bear out the
observations already made about {éggs}; fig.7.11. The
approximately 15% increase in the proportion of all trans
molecules on going from equilibrium to steady state shear is
largely at the cost of the TGT conformers whilst the
proportion of TTG molecules remains relatively constant. The
rest of the difference being made up by small changes in the

numbers of the less popular conformers.
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7.9 Conclusions

From the results at 300K the effect of temperature on the
rheological properties of these flexible molecules has been
clearly demonstrated. For flexane it is reasonable to assume
that even though non-equilibrium calculations were performed
at one shear rate there are only small differences in the
shear dependence of the viscosity , alignment, energy and
pressure etc. between the two temperatures. Confirming the
supposition that the density is the most important parameter
in fluids composed of molecules without barriers to internal
rotation. In hexane, of course, there are barriers to
internal rotation which largely determine the intramolecular
structure and dynamics of the molecules. As the effective
height of these barriers is temperature dependent it follows
that these intramolecular properties are also. What is
apparent from the hexane results is that there is also a very
important secondary intermolecular effect which changes the
bulk rheological properties drastically. There clearly is
then some interest then in establishing which properties of
these fluids differ in their response to an increased
temperature as it is likely that these properties are
generally important in determining the rheological behaviour

of fluids.
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7.10 Static Properties : 200K vs. 300K

For the static intermolecular functions, such as the
intermolecular potential energy and the pressure, the
similarity in the changes for hexane and flexane on going from
200K to 300K have already been noted in sec.7.3. These can be
related to changes in the distribution functions g(r), G(R)
andAjh(RZ shown in figs.7.13—7.15 where the functions at 300K
are compared with the results at 200K. For flexane there are
only very slight changes in all the functions. The site-site
r.d.f., g(r), shows the greater penetration of the repulsive
core which leads to higher pressures and energies and the
characteristic trend of a reduction in the order of the
system, lower peaks and higher troughs in g(r), expected at
elevated temperatures. G(R) and P,(R), with their poorer
statistics, are virtually the sa;; within error. For hexane
it can be seen that the general trend is as it is in
flexanefor g(r). G(R) and P,(R) for hexane do show some
changes , however, with a lossgin the distinct splitting of
the first peak seen in the G(R) for hexane at 200K. This
results from a reduction of the degree of alignment between

molecules in this region shown very clearly in the first peak

of ,F}(H)'

The one static property that noticeably changes on
increasing the temperature is the dihedral angle energy in

hexane (see tables 5.1 and 7.1). This can be seen to result
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Figure 7.13

g(r) vs. r, hexane (1) and flexane (2),

¥=0 T~300K (—), T~200K (—--).
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Figure 7.14 G(R) vs. R, hexane (1) and flexane (2),
»=0 T~300K (—), T~200K (—-).
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Figure 7.

P, R)

P, (R)

15 P,(R) vs. R, hexane (1) and flexane (2),

=0 T~300K (—), T~200K (—-).
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from a different distribution of dihedral angles as shown in
fig.7.16. The higher temperature smoothes out the
distribution reducing the height of all three peaks
corresponding to the minima in the potential , g;@oand g=112@i
The net effect, however, is to reduce the number of angles in
the trans state, if one uses the criteria previously described
in sec.5.7, by around 6% (see tables 5.2 and 7.12). There is
also a similar effect in the distribution of the end-to-end
separations, fig.7.17. The actual percentages of the various
conformers has already been given in tables 5.2 and 7.12.
These show that the change in the TTT peak of:901§1
corresponds to an approximately 11% decrease in the number of
all trans conformers. The resulting increase in the numbers
of gauche containing conformers is spread evenly over the

available possibilities.

The functions p(«) and p(ryg) for flexane at the two

temperatures, given in figs/7.16 and 7.17,show little difference

even on the expanded scale used. This is also apparent from
the percentages of conformers and dihedral angles given in

tables /5.2 and 7.12/.

From the initial comparisons of static properties it
emerges that although the behaviour of the intramolecular
structure of these two molecules as a function of temperature
differs quite markedly there intermolecular structures are

affected to almost the same degree giving similar changes in
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Figure 7.16 p(x) vs. «, hexane (1) and flexane (2),
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Figure 7.17 e(ryg) vs. ryq, hexane (1) and flexane (2),

¥=0 T~300K (——), T~200K (—--).
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the intermolecular potential energy and the pressure. The
results for flexane suggest that this change in intermolecular
structure would not be enough to explain the changes in the
rheological properties of hexane. It is also reasonable to
assume that as the rheological properties are collective in
nature the actual static intermolecular structure is in itself
not an important factor. Thus, it is not possible to explain
the behaviour of hexane in terms of a direct effect of the
temperature upon its internal structure or through the
secondary effect this has on the intermolecular structure.
This leads to the conclusion that the effects seen in hexane

are more a result of changes in its dynamical properties.

7.11 Dynamical Properties : 200K vs. 300K

At the lower temperature the relaxation times for the
internal modes in hexane were found to be in excess of 100ps
when they were determined by fitting the dihedral angle
auto-correlation function;vVC«(tPKq#UD«iﬁQZf , to the form of

a single exponential,

Caclt) = exp(-t/T) .

For flexane T was found to be in the region of @.3—0.5ps
(see sec.5.8). At the higher temperature Cg(t) has again been
calculated and fits to a single exponential have been
performed. These are shown in fig.7.18 for hexane and
flexane. As can be seen C&(t) for hexane fits well to a

single exponential form with a T of ~l7ps. The fit for
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Figure 7.18 The normalised correlation function for
the dihedral angle Cg(t) vs. t, hexane (1)
and flexane (2) with fits to single
exponential, éa(t)=exp(—t/7), (- - =)

(1) 7=17ps, (2) 7=0.32ps.
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flexane is less satisfactory and it appears that there are two
exponential decays present as at 200K where the correlation
function for the central angle was found to have a longer
relaxation time than that for the outer angles. Nevertheless,
the &alue'of 1; used for the fit, ©.32ps, is virtually the
same as at 20@K. This is a significant result as it clearly
demonstrates a major difference in the effect of temperature
on the two fluids. Whereas in hexane the relaxation times for
internal modes are reduced by at least a factor of six by a
temperature increase of 199K the same change has virtually no

effect on flexane.

To emphasise this point the mean time between transitions

. Tm, has again been calculated from the numbers of

tégﬁsitions in a certain time according to egn.5.8.1. This is
as described in sec.5.8 except that 300K the the number of
transitions in hexane was calculated from each 50¢th
configuration rather than every configuration. This means
that there are likely to be fewer 'transitions' counted than
there would have been using the original definition as an
angle going from one well to another and back again within 500
steps may not be counted at all. Despite this slight
inconsistency the mean transition times obtained of ~28ps and
~@.53ps for hexane and flexane respectively compared to those

obtained at 200K, ~11@ps and ~@.7ps, show the same effect as

the dihedral angle correlation functions.
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At 2@00@K it was found that the diffusive motion was
different in the two fluids with flexane having a higher
diffusion coefficient and less oscillatory velocity
auto-correlation function. This was qualitatively explained
as being due to the fact that in flexane its much faster rates
of torsional relaxation could couple more to the diffusional
motion leading to 'softer' collisions and hence less
'rebound'. It might be expected then that as the increase in
temperature affects the torsional relaxation of hexane much
more than that of flexane it then follows that the diffusive
motion of hexane should be affected more by the temperature
than that of flexane. This has been checked by evaluating the
velocity auto-correlation functions and the mean squared
displacements and hence the diffusion coefficients. The
diffusion coefficients obtained from both methods are given in

table 7.13.

Table 7.13. The diffusion coefficients for hexane and

flexane at 300K obtained from :-
(a) the mean squared displacements and

(b) the integral over the velocity auto correlation function.

(a) (b)

;p{lOﬁ’mzsci D/10 °m%s™?
Hexane 9.97+0.08 F.97+0.09
Flexane 1.12+0.06 l1.20+0.09

At the lower temperature it was noted that the two
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methods of evaluating D gave different answers and this was
attributed to truncation of the VACF. At the higher
temperature this does not seem to be the case as both methods
give the same values for D within the errors quoted. A
comparison of the diffusion coefficients obtained using the
mean square displacements approach at the two temperatures

-9 2 -1

reveals that D has increased from ©.35 to 9.97 %10 m's in

hexane and from .53 to 1.12 *Ufgmzé—L in flexane. These

correspond to increases by factor; ofr2.8 and 2.1
respectively. Which is a significant although not spectacular
difference. However, if one instead chooses to look at the
short time diffusive behaviour, given by the VACF, then the
difference is much more marked as D increases from ©.49 to

6.97‘*Hf£m2§—1' in hexane and from .96 to only 1.20

*ld.ggsiil;in flexane, increases by factors of 2 and 1.25
respectively.  Qualitatively this is explained by the changes
in the forms of the VACFs on going from 2@0@K to 300K,
fig.7.19. In flexane there is some movement of the
oscillations in‘gyﬁPL to éhorter times, as might be expected,
but only a slight decreases in their depth. In hexane there
is a significant reduction in this tendency for the COM
velocity to be reversed at later times compared to that at

200K with the result that the short time diffusion is greatly

enhanced.

It, thus, appears that there is more of a correlation

between the change in the short time behaviour of the VACF and
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Figure 7.19 The normalised velocity auto-correlation
function éV(t) vs. t, hexane (1) and

flexane (2), T~300K (——) and T~200K (—--—)
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the change in the viscosity than between the diffusion
coefficient and the viscosity. The lack of correlation
between the viscosity and the diffusion coefficient follows
from the flexane results where the increase in temperature
doubles the diffusion coefficient but as far as can be
ascertained hardly affects the viscosity. This means that it
is not possible to explain the decrease in the viscosity of
hexane in terms of the effect the internal modes have on the
diffﬁsion coefficient a more likely cause is the effect the

flexibility has on the short time dynamic behaviour.

7.12 Conclusions

From the results on hexane and flexane a number of
important conclusions can be drawn concerning the likely
rheological behaviour of real flexible molecules. On a
macroscopic scale it has been shown that the effect of the
flexibility of a molecule manifests itself most noticeably in
the temperature dependence of the viscosity and in the shear
thinning and shear dilatant properties. The model systems
used here predict that for liquids composed of molecules with
differing barrier heights to internal rotation the viscosity,
at constant density, will decrease more rapidly as a function
of increasing temperature for that fluid containing molecules
with the higher barriers. This does not necessarily mean that
the temperature coefficient of viscosity will be higher as

this coefficient relates the dependence of the viscosity upon
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the temperature at constant pressure. The degree to which
this correlation exists between the temperature coefficients
will depend largely on the comparative expansivities of the
two fluids. In the model calculations their would probably be
a very good correlation as the fluids were designed to be as
closely comparable as possible. Indeed, it was certainly
found that the pressure versus temperature behaviour, at
constant density , was much the same in the two fluids so it
is reasonable to expect it to be also the case for the density

versus temperature behaviour at constant pressure.

For fluids undergoing shear flow these model studies
predict that the degree of shear thinning and shear dilatancy
will be dependent upon the molecular flexibility. It has been
found that less flexible molecules will shear thin to a larger
extent and show a greater tendency to adjust their volume
under shear. The magnitude of these effects will also
decrease more rapidly with temperature in accordance with the
findings for the temperature dependence of the zero shear rate

viscosity. P

An interesting question arises concerning the comparative
mechanisms by which the viscosity falls as a function of
temperature and as a function of shear rate. As the
temperature is increased it appears that the viscosity
decreases because the reduction in the effective barriers to

rotation increase the flexibility of the molecules which in
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turn alters the short time dynamic behaviour. As a function
of the shear rate it is true that the shear flow can cause
drastic changes in the conformation of molecules but there is
not any noticeable change in the flexibility. This leads to
the conclusion that the mechanism causing the shear viscosity
to decrease as a function of temperature is not the same as
that which causes the shear thinning. Indeed, it seems that
the effect of increasing the shear rate is to reduce the
importance of those properties which lead to a difference in
the zero shear rate viscosity thus explaining the virtual
coincidence of the high shear rate viscosity of hexane and

flexane at 200K.
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CHAPTER 8

GENERAL CONCLUSIONS

8.1 Diatomics

In the diatomic chlorine calculations it has been
demonstrated that two molecules, differing only in their
anisotropy, have quite different pressure coefficients of the
viscosity. _The effect is to cause the longer molecule, which
is less viscous at low pressures, to become more viscous than
its shorter counterpart at pressures of ~l1GPa. It was found,
however, that this behaviour correlated closely with the
compressibilities of the two liquids, that composed of the
longer molecule being the more compressible. This is an
important result as in real lubrication situations pressure is
the applied variable rather than density so fluids are
characterised in terms of their pressure coefficients of
viscosity and reasons are then sought to explain why these
vary. The diatomic results suggest that a better correlation
might exist for their density coefficients of viscosity and
then the problem reduces to one of explaining differences in
their compressibilities. Sufficient data probably exists on
real lubricants to test this hypothesis, if it has not been

done already.

One interesting question that remains unanswered in the

diatomic systems is the degree to which the anisotropy affects
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the shear thinning behaviour. If it is purely a density
effect then a similar correlation would exist in their, as yet
undefined, 'density coefficients of shear thinning' as for the
density coefficients of the viscosity. This could be tested
using HSNEMD but would require data from several more
densities in addition to those studied here to get a clear
picture of how the degree of shear thinning varies. It is an
important question to answer as it is under the highly
directional conditions found at high shear rates that the
effect of the 'shape' of a molecule is most likely to manifest
itself. If it transpires from these kind of model studies
that the anisotropy is an important factor in determining the
degree of shear thinning it would have obvious relevance to

the design of real lubricant molecules.

8.2 Ethane and Propane

The results for the smaller alkanes principally
demonstrate the overriding effect the interaction potential
has when one considers the rheological properties in absolute
terms. By simply adding an extra site to the diatomic model
the resulting triatomic was demonstrably more viscous and
showed greater shear'thinning and shear dilatancy. It was
reasoned that this was largely due to the different effective
temperatures of the two liquids rather than the difference in
the densities. To put the results in to context further

calculations would have to be performed at different
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conditions to assess the likely changes caused by geometrical

factors.

8.3 Hexane and Flexane

In the hexane and flexane calculations it was possible to
come closest to the desired goal of observing the effect of
one parameter independently of all others, in this case the
flexibility. It was found that although the two fluids
differed radically in their intramolecular structure and
internal dynamics, thermodynamically they were very similar.
This enabled comparisons to be made between the twolliquids
essentially at the same state point. The results of studies
at constant density and at two different temperatures revealed
that the barriers to internal rotation exerted a significant
influence on the rheological properties of these fluids. At
the lower temperature the zero shear rate viscosity, degree of
shear thinning and the shear dilatancy were all greater for
the molecule with the higher internal barriers to rotation,
hexane. The effect of increasing the temperature was found to
be to reduce the differences between the two and it was
concluded that molecules with higher internal barriers to
rotation will have higher temperature coefficients of

viscosity provided that their expansivities are comparable.
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APPENDIX 1

Link Cells

The method of link cells [129,130] is a technique whereby
large samples N»1000, of particles interacting through short
range forces can be simulated efficiently. The method works
by pre-eliminating most of the N(N-1)/2 possible pair
interactions which fall outside the interaction sphere of a
particular particle. This is achieved by subdividing the main
MD box into smaller cells to which the particles within them
are assigned the number thereof. Particles then only interact
with those in their own and neighbouring cells. To be
consistent the length of a cell, CL, has to be greater than
the cutoff distance of the potential and if L is the length of
a side of the box L/CL must be an integer which must not be
less than three. In the case used here for the diatomics the
positions of the COM, which all lie between +1, were used to
assign link cell indices. A cubic box was used in all cases
of,HLi,cells, so for all sides of the MD cube L=NL*CL.
Initially the indices of a particle I, say, are found from

IX = (XCOM(I)+l.@)/CL + 1
and similarly for IY and IZ. This gives the number of the
cell of which I is a member as
IC(I) = IX + (IY-1)*NL + (IZ-1)*NL
which is stored for future reference. To join all such

molecules in a certain cell together three arrays are used
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L@ (NL,NL,NL), L1(NL,NL,NL) and LINK(N). Arrays L@ and L1 are
used to store the first and last members of cell IX,IY,IZ.
Before the initial assignment of particles to cells L@ and L1
are zeroed. The procedure, having found the cell indices, is
then to find the last member of the cell, M say, where
M=L1(IX,IY,IZ). If M=@, which it will do initially for all
cells, then

LO(IX,IY,IZ)=I
L1(IX,IY,IZ)=1

otherwise

LINK(M)=I
L1(IX,IY,IZ)=I.

This procedure performed for all N particles sets up the open
chains of particles in each cell. The following procedure is
then used to close the chain

M=L1(IX,IY,IZ)
LINK(M)=L@(IX,IY,I1Z)

To evaluate the forces the conventional MD double loop is
replaced by a loop over all cells. Having identified the
indices of the subject cell, I1,J1 and Kl say, a list is
generated of the indices of the molecules in that cell by
IT=0
I=L@(I1,J1,K1)
M=I
99@3 IT=IT+1
INOM(IT)=1
I=LINK(I)
IF(I.NE.M) GOTO 9003
ITC=IT
and a note is made of their number, ITC. The list, INOM, is

then extended in a similar fashion to include all molecules in

thirteen of the nearest neighbour cells. Only thirteen of the
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possible twenty six are taken as a loop over all cells ensures
that all neighbouring cells will eventually be taken together.
This procedure generates in INOM a list of IT molecules the
first ITC of which are in the subject cell. A simple double
loop then performs the business of taking those pairs of
molecules, I and J, to be interacted

DO 96808 I1IK=1,ITC

I=INOM(IK)

IK1=IK+1

DO 9949 JK=IK1,IT
J=INOM(JK)

This method differs from that in [129] in that the 13 nearest
neighbour cell indices only have to be generated once for each
subject cell instead of once for each molecule in the subject

cell.

The rest of the force routine etc. is as it is in a
conventional program but as the molecules move they will
eventually move out of one cell into another. To test this
the number of the cell the molecule I is in now is generated
" from the indices and compared with IC(I). If it is the same
then one passes to the next but if it has changed then its
reference has to be erased from the link list of its old cell
and included in that of its new cell. This occurs at the end
of each time step after the implementation of the usual

periodic boundary conditions.
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The method is certainly very efficient in terms of store
requiring at most two more N-dimensioned arrays than usual
plus L@ and L1 each of dimensionigiifand the list array INOM
which will be dependent upon the maximum number of molecules
to be found in a total of 14 cells. In terms of CPU time
tests have shown [130] that for sample numbers less than ~1000
the link cell method represents a saving over conventional
programming. It is slow compared to nearest neighbour table
methods, however, but becomes progressively more attractive as
the sample number is increased and the neighbour table method
runs into memory requirement trouble and the problem that at
least one very time consuming conventional double loop has to

be performed periodically to update the neighbour list.
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APPENDIX 2

Forces from the Dihedral Angle Potential

As the dihedral angle potential,;jggij given in eqgn.
5.2.1, is written in terms of the dihedral angle it is
necessary to expressigiin terms of the four positions defining
’@Lto obtain the forces on these sites due to it [131]. If

these sites are ry §ir, ;'ry and rj then the force on site i due

to the dihedral angle potential,{f?“; is given by

o= AP() o - dO() deosx ‘
';'!1 % '*dr_i . dcosx dry g W*'Céw

There is no difficulty in differentiatingwjgéi with respect to

cosx but to perform the second part of egn. A2.1 cosx has to

be expressed in terms of the positions of the sites. From

fig. A2.1 it can be seen that ieesx is given by the dot

product of the two unit vectors @ and ﬁ

G-~

Now m is given by SO
PEpiy-ataiy - Al
and n by
W = L4a — iazbocosp‘z L43 ~ I'spcosB LVﬁ_légLél,

since in the model used here the bond lengths and the bond
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angles are rigidly fixed at the values ofibb:L53x tand

,‘é°=10-9028'.=180°—p '+« Combining eqns. A2.2, A2.3 and A2.4 gives
“ : O a2 A
(r2y — rgacosB) - (ras — r32c08B)/bosin™A

COSX =
= 2 2 2 .2
= ((r21°rqa) - (raaas3)cosB — (rzy°rgz)cosB + racos B)/bgosin B
which as
: . & (e
I32°L43 = F21°r3z = boCos B
gives

lcosa = (ry, 7t - bicos A bisin®s . (42.5)

Differentiating eqn. A2.5 w.r.t .r; ,for example, gives

dcosx 2 ¢ p S
dr,  ~ Tes/bosin’B |

and combining with eqn. A2.1 gives for the force on site 1 as

'EE? ¥ %%i:)£4alnginzﬁg

| -

and similarly for the other sites.

As their are three dihedral angles per molecule sites
that make up more than one angle will feel a force from each.
This is simply achieved by treating each angle in turn and

summing the resultant forces.
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APPENDIX 3

Nearest Neighbour Tables

The method of nearest neighbour tables [1@2] is the
predecessor to the link cell method as a means of reducing the
amount of time required to access those pairs which are within
each others interaction sphere. 1In its original form a N*N
array is used to store the index of those particles which are
within a certain radius, rp, of the subject particle, I,
during the course of evai;;£ing the forces in a normal double

loop. For a number of subsequent steps only those particles

in the table are considered thus reducing the CPU time

substantially. rp/is chosen such that rp-r., the truncation

radius, is greater than the distance that could be reasonably
covered by a particle in the number of steps between updates
of the table. Various improvements, refinements etc. have
been suggested, e.g. [132,133,134], to try and make the
process more efficient and to reduce the active memory
requirements. In the method used here for the hexane/flexane
program, on the CDC 76804, where for 108 molecules, i.e. 648
atoms, virtually all the small core memory was required, a
simple variant of the method of neighbour tables was used

requiring virtually no extra active memory space.

This was achieved by including in the conventional double

loop the following alterations

280



N1=N-1
DO 1909 I=1,N1
XI=X(I)

ITC=0

I1=I+1

DO 20@ J=I1,N
XD=XI-X(J)

R2=XD**2+YD**2+ZD**2 g~
IF(R2.GE.RM2) GOTO 200 | (RM2 = r2)
ITC=ITC+1 ——
INUM(ITC)=J

IF(R2.GE.RC2) GOTO 200 | (Rc2 = r2)

. Lo~ Wee

209 CONTINUE
WRITE(49)ITC, INUM

199 CONTINUE
The neighbour lists are thus stored sequentially on disc, on
channel 49, in machine readable form. In the case used here

rm=rc+l.lxband the lists were updated every 1@ steps. In the

alternative loop the procedure was then

REWIND 49
DO 144 I=1,N1
XI=X(I)

READ (49)ITC, INUM
IF(ITC.EQ.d) GOTO 1900
DO 2800 JC=1,ITC
J=INUM(JC)

Despite the overheads incurred in writing to and reading from
disc this method still represents a'saving, in terms of CPU
time, over the conventional MD double loop and although it is
not as fast as the usual nearest neighbour method it does not
have the store problems thereof requiring only one extra

vector of dimension N.
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