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ABSTRACT

The rheological properties of a number of liquids

composed of model molecules have been characterized in detail

using the technique of Molecular Dynamics (MD). The models

consisted of molecules composed of 2, 3 and 6 interaction

centres including, in the latter case, internal degrees of

freedom. It has been shown that of the available methods of

determinining the viscosity by MD, (ttre Green-Kubo formula,

perturbation experiment and homogeneous shear non-equilibrium

molecular dynamics (HSNEMD) ), HSNEMD is the most accurate and

efficient.

HSNEMD calculations on fluids composed of diatomj-c

molecules have been performed at various densities and for

different molecular anisotropies. For these models a simple

correlation has been established between the pressure

coefficient of the viscosity and the compressibility.

Comparisons of diatomic and triatomic models representing

ethane and propane under the same conditions of temperature

and pressure show that the difference in rheological behaviour

has its origins primarily in the different effective

temperatures of the two liquids. Similar experiments

performed on a model n-hexane fluid with and without barriers

to internal rotation have shown that the degree of flexibility

of a molecule has a strong influence on its temperature
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coefficient of viscosity. For the first time the ability of

shear flow to extend molecules ?ras been demonstrated

convincingly.
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CHAPTER 1

INTRODUCTION

I.1 The Aims of this Work

Relating the properties of liquids to the structure of

the molecules of which they are composed has been the aim of

much experimental and theoretical research. The

identification of specific molecular characteristics which are

responsible for certain behaviour would obviously be of great

importance. The main difficulty, however, in this type of

research lies in dist.inguishing the effect of one molecular

characteristic on the properties of a liquid from all the

rest. Ideally we would like to observe the interdependence

between a particular macroscopic property and just one

moleeular variable. In reality this is in general impossible

to realise due to the coupling between the molecular

variables. In practice it is possible to observe trends

within certain groups of compounds for many properties but

this does not necessarily lead to the determination of the

relative importance to a particular bulk quantity of the

characteristj.cs which constitute the molecule in question.

The specific purpose of this work is to investigate how

the details of molecular interactions affect the rheological

properties of fluids, i.e. the properties of materials

undergoing deformation or flow. This has a particular bearing

on the lubrication industry where there is a constant need for



new lubricants capable of working in more extreme bonditions

of, for instance, high and low temperatures, high pressures

and high shear rates. Experimentally the measurement of the

molecular properties of fluids subjected to the extreme

conditions mentioned is extremely difficult using the

conventional techniques employed at equilibrium. Indeed,

investigations within this field of research are traditionally

carried out using either disc machines to model the

lubrj.cation situation, or high frequency oscillating shear

equj-pment. These techniques have been mainly used to obtain

data concerning the pressure, shear rate and frequency

dependence or trr" viscosity of a wide range of fluids. Little

if anything, however, can be determined about the effects of

the applied condj-tions at a molecular leve1.

To try and obtain detailed molecular information computer

simulations using polecurar dynamics (up) have been carried

out tll. In this method the classical N-body problem of a

particle moving in the fluctuating force field of its

neighbours is solved numerically with the aid of a computer.

This is achieved by integrating the equations of motion over a

small time interval ( -10-ta" ) for a small number of particles,

N (typically N<LAhA ), which interact through a known force

law and which are subject to specified boundary conditions.

Repeating this procedure produces a complete history of the

N-particle system's trajectory through phase space. Uto*

situations have been modelled previously using MD by imposing
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velocity gradients and it has been shown that even systems

consisting of simple spherical particles show qualitatively

similar rheological betraviour to that of much more complex

real molecules 12). The main objective of this research has

been to extend these model studies to more elaborate types of

molecules with the intention of obtaining some insight into

the effect of changes in the molecular variables on the

macroscopic rheological properties of the liquids.

1.2 Experimental Studies

The need to acquire molecular information concerning the

rheological behaviour of liquids subject to extreme conditions

is the direct result of observations from studies carried out

on disc machines t3-51. In these experiments two rotating

discs are loaded together in line contact with their axes

parallel. The surface of the cylinders are continuously

Iubricated and the variation in the lubricant film thi-ckness

and the traction between the cylinders are measured as a

function of the mean and relative circumferential speeds of

the cylinders and as a function of the normal load.

Originally t3l this form of equipment was designed to model

the lubrication situation found in gears and roller bearings.

This is generally termed elasto-hydrodynamic lubrication as

the hydrodynamic pressures generated between opposj-ng surfaces
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can be large enough to induce appreciable elastic deformation

of the materials being lubricated. The initial results of

these studies i3l proved by resistivity measurements that a

film of lubricant did exist between the cylinders so that

there was no significant solid contact. CIearIy the magnitude

of the film thickness is of great practical importance as this

will determine the rate at which the surfaces wear and thus

eventually fail. Consequently much of the effort in these

initial studies was spent in attempts to correlate

experimental findings with available theories of film

thickness [0 ]. The results of these studies have been

adequately reviewed in the literature 17,81 and the general

conclusion reached was that the fitm thickness could be

adequately predicted assuming that the liquid is Newtonian and

that the viscosity is a known function of pressure.

For the frictional traction these basic assumptions lead

to predictions far from the experimental results. The high

shear rates, 4 107s-1 and the high pressures , -lGPa,

involved and the actual duration of the transit, I "+ 10-6s,

make the situation difficult to treat theoretically t9l. This

is because the material parameters and functions required to

give a reasonable model descr.i-ption of the problem cannot

usually be obtained even from more controllable rheological

experiments. It was realised at an early stage tsl that the

behaviour of the lubricant differed markedly from the assumed

behaviour of 
^ 

= o/y, where o i-s the stress, which is related



to the frictional traction, and n and }r are the viscosity and

shear rate respectively, n(t)*exp(-L/T) and n(P)*exp(P)

It was noted that the viscosity depended upon the relative

motion of the cylinders i.e. sliding speed, which is

proportional to the shear rate, suggesting a non-Newtonian

relation between the stress and the shear rate i.e. n(i). In

particular it was found that t5l the apparent viscosity

decreased as a function of increasing shear rate, behaviour

known as shear thinning, to such an extent that it could not

be caused entirely by the viscous heating.

Since the early results of Crook t3l ttrere have been

further reports of experiments performed using various kinds

of disc machines 17,8,LA'L6). These have extended the range

of conditions over which the materj-al properties have been

calculated and also Varied the geometry of the contact zone as

well as increasing the number of different lubricants that

have been studied. Furthermore Johnson and coworkers [17,18]

have concluded that the behaviour of a fluid in an

elasto-hydrodynamic (eHp) contact can be adequately

parametrised using empirical relationships and data obtained

from sample trials on a simple two disc machine. For most

practical purposes a reasonable prediction of the behaviour of

a lubricant is all that is required but this provides us with

Iittle or no understanding of the effects at a molecular

Ievel.



To try and obtain information from a different source use

has been made of the connection between the behaviour of

fluids in oscillating and continuous shear. In theory a

knowledge of the frequency dependence of the viscosity can be

used to predict the time dependence of the viscosity in

response to a shear rate, applied as a step function, bY

Fourier transformation. This is only strictly true, however,

in the limit of small shear rates. Some models of

visco-elastic relaxation [19] predict a connection between the

viscosity in oscillatory shear and continuous shear at all

shear rates but if non-Newtonian effects begin to prevail the

connection becomes less certain. Nevertheless these forms of

measurements have produced interesting results.

Until the introduction of piezo-electric transducers

l2g,2tl alternating shear methods of viscosity measurement

were restricted to. frequencies of less than 2*10' Hz [227

using mechanical or electro-magnetic devices for wave

generation. To observe any elastic behaviour the reciprocal

frequency has to be of the same order as the characteristic

shear relaxation time of the fluid, Tm, given by the

. Typically G- , the infinite

frequency shear modulus, is of the order of l0spa for many

liquids [23] so only liquids of viscosities greater than

l0 
+P,a s, e. g. polymeric liquids, could previousty be studied.

This effectively excluded all simple liquids as their

viscosities tend to be less than 10-2pa s. However, the

Maxwellian relation T_=rt/G-
m
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increased frequency r'ange accessible using piezo-electric

transducers, up to 10sHz, allows the investigation of liquids

with viscosities -lPa s. This is still higher than the

viscosities of many liquids but by increasing the viscosity

either by supercooling L227 or by increasing the pressure 124)

it has been demonstrated that the technique can be used even

for single component relatively simple fluids 125). The

restriction being that the material does not crystallise as

the temperature is lowered or as the pressure is raised.

Measurements using this technique are generally made by

observing the change in phase and amplitude of shear waves

repeatedly reflected from the interface between a fused quartz

bar and the sample liquid as compared to that between a fused

quartz bar/air interface. This allows the calculation of the

shear mechanical impedance of the liquld and indirectly the

components of the complex shear modulus, G*(io), and the

complex viscosity, n*(iqr). In theory it is possible by

varying the value of t^l , the frequency, to obtain the shear

modulus and the viscosity over the entire frequency range.

However, in general experiments are performed at certain fixed

frequencies and the results obtained at different temperatures

and/or pressures are compared using the principle of

time-frequency reducibility 123). This involves the use of a

reduced frequency Lrr=u7m which is varied not by changing the

actual frequency o but by varying r, which is a function of

temperature and pressure. Dyson t19] has compared the results



obtained from both oscillatory and continuous shear

experiments. At Iow shear rates or frequencies the agreement

is good as is expected theoretically (n(tt).rro = n(r) y+o = no)

but as the frequency and shear rate are increased there is

less agreement. This makes it difficult to relate the results

from the two forms of experiments.

One interesting aspect of Barlow and Lamb's early work

122) using oscillating shear techniques was their attempts to

relate the results for G*(iLr) to the components making up the

oil used. They arrived at assignations of broad frequency

regimes as major contributions to G*(iu) arising from certaj-n

components of the oiI. This was, however, Iater shown to be

an over simplification by Hutton 1267 who performed

experiments on some of the individual fractions. Much more

effort, however, has been put into explaining the results in

tdrms of models of visco-elastic relaxation.

There are several models which incorporate both elastic

and viscous responses to applied strain rates. These models

use as an analogy the response of a Hookean spring and a

'dashpot', i.e. piston, to an extension to represent the

elastic and Newtonian viscous behaviour. The simplest of

these models is the Maxwell element which corresponds to a

spring and dashpot connected in series. This element will

thus exhibit viscous behaviour if it is extended slowly

, elastic behavj.our when it is quickly extended and a
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combination of both in between. Although this model j-s

intuitively appealing and the response to both oscillatory and

steady shear rates can be readily calculated few liquids

actually behave in this manner. More complicated models can

be readily generated by adding further elements in parallel or

series to oblain more realistic responses but this procedure

j-s purely arbitrary and does not reveal any of the fundamental

processes governing viscoelastic relaxation.

A much more successful description of the viscoelastic

behaviour of real fluids has been found to be given by the BEL

model of Barlow, Erginsav and Lamb fZll. This model does not

have an analogy in terms of springs and dashpots but it was

originally arrived at by adding the reciprocal impedances,

L/ZL = particle velocity/-shear stress, for a purely elasti-c

element and a purely viscous element to obtain that of a

vfscoelastic fluid. This model has been shown [28] to fit

accurately the results obtained for the shear mechanical

impedance from high frequency oscillating shear experiments.

The same equation has also been derived by Phillips et al 129)

using a defect diffusion model. Although this approach does

offer some understanding at a molecular level it is based on

the rather unphysical idea that molecular relaxation can only

occur when a defect or'hole' diffuses to a neighbouring site.

In its original form the BEL model can describe quite

well the behaviour of many single component systems there are,

9



however, several deficiencies. For mixtures it has been found

necessary to include one rcA) or even two [Sf 1 adjustable

parameters to adequately describe the response of these

multi-component systems. Secondly, it has been pointed out

125,321 tnat there can be systematic deviations of the

predictions of the BEL model from the experimental results,

especially at low frequencies. Lastly, it has also been shown

that the BEL model predicts unphysical behaviour as the

frequency tends to zero for the first normal stress difference

lZSl and for recoverable strain [33]. Consequentially the

failure of the BEL model at low frequencies is attributed to

its theoretical shortcomings.

One other equation which has been successfully applied to

model viscoelastic relaxation is that of Davidson and CoIe

[34]. Originally used as an empirical equation to model the

results for dielectric relaxation it has been employed by

Davies et al 832) to describe their results obtained for a

number of pure fluids from high frequency shear experiments.

Although si-milar in some respects to the BEL model it does

contain three adjustable, though theoretically interdependent,

variables which have to some extent been correlated with

molecular sphericity and flexibility in a series of organic

molecules. In general the tendency towards sphericity has

been associated with a narrower distribution of relaxation

times whereas increased flexibility has been shown to some

extent to have the opposite effect of increasing the spread of

LA



relaxation times. More specifically Kim t35l has discussed

the Davidson-Cole model in terms of the translational and

rotational relaxation times of molecules but reaches a similar

conclusion.

Interpretation of these models in terms of molecular

behaviour remains speculative as in general the dynamical

properties of ttre molecules comprising the fluid in question

are not known. Furthermore, even less is known about the

effect of applied conditions of high Pressure and high shear

rate on the structural and dynamical properties of the fluid

and how this alters the rheological behaviour. For this

reason comparisons made between experiments performed using

oscillating shear, where the fluid is assumed to be close to

equilibrium, and continuous shear, where the fluid can be far

from equilibrium, can only give qualitative information as the

experiments are performed on effectively different liquids.
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1.3 Simulation Studies

An alternative to the methods already discussed for

determining rheological behaviour is that of molecular

dynamics (uo). Although few studies lL,2l have specifically

set out to correlate the rheology of real and model liquids

there has been a good deal of effort put into the evaluation

of the viscosity of model liquids which has indirectly

produced results of interest concerning the visco-elastic and

non-Iinear effects which are of primary importance to the

problem in question.

Originally MD calculations were performed on systems

consisting of spherical particles which interacted through

discontinuous potentials t361. Later techniques were

developed for employing realistic continuous potentials [aZ3

and eventuarry methods were devised for modelling molecules

with rotational degrees of freedom Ia8, gg ,4A) and ultimately

molecules containing internal modes [41]. The advantage of MD

over other computer techniques, e.g. Monte-Carlo l+21, is

that it provides not only static equilibrium properties but.

also a complete record of the dynamical evolution of the

system. The dynamics of the system are directly responsible

for the fundamental processes of mass, momentum, and energy

transport which can be described as processes which strive to

make the intrinsic state variables independent of position.

On a macroscopic scale when averages of state variables are
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functions of position gradients will exist. If the system is

close to equilibrium any gradient, G, of a State variable will

be related to its conjugate flux, Q, by a linear relationship

of the form Q=CG. C, the constant of proportionality,

determines the rate at which the system approaches equilibrium

and is called the transport coefficient. In the case of

momentum transport the gradient is the shear raLe, y, the

conjugate flux is the stress, O, and the transport coefficient

is the shear viscosity, rl, o=ni.

In equilibrium molecular dynamics (fUO) ttre state

variables are not on average functions of position so

consequently gradients do not exist and the viscosj-ty cannot

be calculated from the simple relation given. However, in a

system fluctuating about its equilibrium state fluxes will be

spontaneous and short lived. The theoretical treatment of

such fluctuations tras been accomplished notably by Green t43l

and Kubo 144) with the result that a transport coefficient can

be written as the integral under the appropriate correlation

function t451. In the case of shear viscosity

n= <o@(o)oqF(t)> at ( r.3. 1)
vI
KTJ

o

where V is the volume of the system, T is

<o*(0)o*(t)> is the stress correlation

off-diagonal component of the microscopic

defined as

the temperature and

function. o4 is an

stress tensor
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( 1.3.2)

where [i, pi and Ri are the mass, momentum and position of the

centre of mass of molecule i , lij = !i - Ej and lij is the

force on molecule i due to molecule i.

The first attempt at calculating the shear viscosity from

EMD simulations was made by Alder, Gass and Wainwright l46f on

a system of hard sptreres. They did not use the Green-Kubo

expression, eqn,I.3.1 ,but the equivalent Einstein expression

l47J which relates the viscosity to a mean squared centre of

momentum displacement

n = rinr,, # ( 
[ ri,*1(t)Hpr(t) 

- pc1(O)Rp.,r,] >

where pi is the momentum of particle i and qr9 = x,y,z.

The first calculations for systems interacting through

continuous potentials were made by Levesque et al t+43 on

model liquid argon. Their results and those of subsequent

studies L49,5gl have gone to underline the difficulty of

obtaining the stress correlation function to sufficient

accuracy for the length of time required to obtain a limiting

value for the Green-Kubo integrand. As the stress is an

N-particle property there is only a limited amount of

averaging available from a MD simulation as compared to a

g = + [ i,:,"r, 
. 
J, i 

r',r', 
]
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single particle property. The only way of obtaining better

results is to either i-ncrease N or to integrate the equations

of motion for a longer amount of time. However, even runs of

LAA,AgA time steps have proved insufficient t48l due to the

apparent correlations which persist. for long times, the so

called 'long time tail' to the stress correlation function.

The resulting viscosities obtained from these calculations

have been found to give l4B-SAl qualitative agreement with the

viscosities of the real fluid the potentials used are

modelling, even though the potentials used are invariably

fitted to the static properties of the liquid rather than the

dynamic properties.

Although this method is impractical for producing precise

values of the viscosity it does give good results for the

short time behaviour of the stress correlation function. As

it'is the integral of the stress correlation function which

determines the response of a liquid to a step function

increase in shear rate it is of fundamental importance as it

provides a direct test of models of visco-elastic relaxation

which can usually only be tested in frequency space as the

stress response function is generally unobtainable directly

from experiments on real fluids. Furthermore, the zero time

value of the stress correlation function is related to the

infinite frequency shear modulus through the equation [51]

c. = tf <"furol>
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Go is an important viscoelirstic parameter as combined with

the viscosity it determines the characteristicr or Maxwell,

relaxation time of the fluid r, = n/G6 . In real liquids it

is determined from data obtained in oscillating shear

experiments L23). As already described these experiments are

limited in the range of conditions at which they can be

performed thus the variatj-on of Go with temperature and

pressure etc. is not generally known. In contrast to this it

is theoretically possible to evaluate Go of a model liquid at

any state point.

The problem of obtaining results of reasonable precisi-on

for the viscosity led to the development of different

techniques for evaluating transport coefficients. The general

idea behind this new approach was artificially to perturb the

MD'system and ttren to use the Navier-stokes equations of

macroscopic hydrodynamics L527 to determine the viscosj-ty.

The perturbation that is applied also prevents the system from

attaining equilibrium and thus these methods are generally

referred to as non-equilibrium molecular dynamics (unup).

One of the first successful applications of NEMD was that

of Gosling et aI L49) who devised a method to measure the

shear viscosity of argon modelled by a Lennard-Jones L2-6

potential. In their method the particles are subject to an

additional external force which acts in the x-direction but
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depends upon the particlets z-coordinate,

?xQ) = Fosin(2nnz/L)

where L is the length of the MD ceII, Fs is a constant and n

is an i-nteger. This type of force is consistent with the

periodic boundary conditions as fx(t) = Fx(0) = 0. The solution

of the Navier-Stokes equation involving an external force

indicates that a sinusoidal drift velocj.tyr

ux@) = Uosin(27n2/L) ,

is set up. Determination of the amplitude, Uo, after steady

state has been achieved, allows the determination of the

viscosity from

PL2Fo
n-

-224trnm

where m is the mass of an atom. Reasonable agreement was

achj-eved with experimental studies over a range of state

points for which the viscosity varies by a factor of 8.

Difficulties arose , however, from the need to use a value for

t'o large enough to produce a measurable response j.n such a

small system. It was found that Fs had to be of the order of

L/LA of the root mean square intermolecular force before an

acceptable signal-to-noise ratio was achieved unfortunately

this resulted in the temperature of the system rising rapidly
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by LA, s of degrees K within times of -10-1os . Higher values

of f'6 were found to produce more precise results for ttre drift

velocity but also caused the system to heat up more rapidly

due to the greater amount of work being done. One other

factor that had to be taken into account was the fact that the

equations used are strictly true only in the long wavelength

limit i.e. as k-+0, where k=Ztn/L . Indeed it was found by

Gosling et al t49l that their results for n were significantly

reduced by increasing the wave vector, k, by a factor of two.

Nevertheless, the results obtained were considered to be aS

precise as those obtained from the Green-Kubo formulae which

used ten to twenty times the amount of computing time.

At about the same time alternative methods of NEMD rr/ere

being pioneered by Ashurst and Hoover t531. They decided to

abandon the usual periodic boundary condition in an attempt to

simulate planar Couette flow, i.e. the flow of a fluid

between parallel plates moving relative to each other at a set

distance apart. They first experimented with hard and

repulsive walls in the positive and negative z-directions but

unacceptabLe density gradients were imposed on the system.

Eventually they used a system which was periodic in the +x and

+y directions but which was bounded in the *z-directions by

extra layers of particles of thickness dz. dz and the number

of particles in the 'f luid walls' , Nr{ , was chosen so as to

maintain the same density as the bu1k. Any particle

attempting to leave either of the three regions through a z

18



face was reflected back into the same region simply by

reversing its z component of velocity. To impose a velocity

gradient on the bulk the velocities of the particles in the

waII regions are scaled continuously to maintain a constant

wall velocity of opposite sign in the two regions. At steady

state a linear velocity profile should be set up between the

walls through the bulk and the sum of the forces on the

particles making up the walls due to those in the bulk

equal to the wa1l shear stress times the area of the xy

o*.t . The shear viscosity can then be calculated from
du*

mean velocity gradient, aff, = (/) , and the mean shear

stress as

n = (o >/<Y>'xz

This method alleviated the problem of viscous heating as the

particle velocities in the fluid wall could be scaled to

maintain a constant temperature in these regions with the

effect that heat is removed from the bulk. Result for n

obtained using this method for LJ argon and the soft sphere

fluid ( o(r)*r-12 ) were found to depend upon the shear rates

used and also the system size. However, using s5-mple

relationships to correct for infinite size, i.e. k=A, and

zero shear rate they achieved good agreement with experimental

data for argon. It was further noted that shear rates in

excess of 101os-l , far beyond the range of real experiments,

were required to separate the responses of the system to the

shear flow from the natural fluctuations inherent in small

l-s

plane,

the
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sample sizes.

The main disadvant.age of the 'fluid' walI method is the

dependence upon the width of the sysLem, which is effectively

a number dependence. Hoover and Ashurst found that t53l the

viscosity of LJ argon, close to the triple point, determined

with N=108,2L6 and 324 parLicles i.e. widths of L, 2L and 3L,

differed from each other, systematically decreasing with

increasing width. To avoid extrapolations to zero k most

subsequent NEMD calculations of the shear viscosity have used

the boundary conditions first suggested by Lees and Edwards

(lr) t541. There innovation was to apply a linear velocity

profile to the primary MD cel1 whilst maintaining consistency

with the usual periodic boundary conditions. For a shear in

the xz plane it involves the translation of periodic images

above (fetow) the primary cell in the positive (negative )

x-direction a distance iif,t , where L is the length of the MD

cell and t is the time into the simulation. This effectively

reduces the width dependence as the veloci-ty profile stretches

to infinity in both the +z and -z directions. In the lx and

+y directions normal periodic boundaries are retained.

Particles crossing the 1z boundaries are di-splaced a distance

Tltt in the x-direction on re-entering through the Tz faces.

The actual shearing of the particles can be achieved in two

ways. Firstly, a displacement ?Q-L/z)dt can be added to each

particle at every time step or alternatively allowing the

z-axis to vary as a function of time such that the angle o
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between the z-axis at time L=A and some later time t=t is

given by t55l

o = tan-l Od .

This type of homogeneous shear NEMD (HSNft{o) has been used

since by Naitoh and ono [56] to obtain the viscosity of a

system of hard spheres and by Heyes et aI lL,2l who made a

detailed study of the changes in the structural, thermodynamic

and dynamic properties of the LJ argon system subjected to

high shear rates at high densities. A refinement of the basic

HSNEMD algorithm has been developed by Evans [55]. This takes

into account the fact that the shear rater ds determined from

the particle velocitj-es, fluctuates spontaneously in small

systems. Whereas the method prevJ-ously described assumes that

these fluctuations average to zero Evans method suppresses

them by altering the velocity of each particle in such a way

that a linear least squares fit to the shear rate,

N

t,?,
i=1

N

i=)
i=1

"*r'r/

returns the required value for y. The viscous heat generated

is also removed by simulated contact with an ideal heat bath,

i.e. scali.ng of the momenta. Using this method Evans has

determined the rheologlcal behaviour of soft sphere mixtures

157) ,LJ argon tSS1, soft discs t591, and various polyatomic

fluids L55,6A,611. Strict control of the shear rate also

allows it. to be made a function of time and Evans [55] has
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also demonstrated the practicability of evaluating the

frequency dependence of the shear viscosity by applying an

oscillating shear rate.

More recently Hoover et aI L627 have proposed

modifications to Hamiltons equations of motion based on the

Do1l's tensor, E gp , formulation to produce a shear f low

driven by a fictitious external tensor field. This method

still requires the use of translating image cells or time

dependent axes and not surprisingly results obtained using

this and the other homogeneous shear variants compare well

162f. Evans t63l and Hoover L64) have also discussed further

modifications to Hamilton's equations of motion which allow

certain ensemble properti-es to be exact constants of the time

evolution of the system. So far these 'damped force I

equations have been used in MD by Hoover, Ladd and Moran t65]

and Brown and Clarke [OO1 to constrain the temperature and by

Evans [63] to constrain the internal energy in HSNEMD

calculations.

In the non-equilibrium techniques so far outlined the

gradients that have had to be applied are so large that the

measurements made are inevitably in the non-linear regime.

This is evident from the often pronounced / dependence of the

shear viscosityr the pressure and the energy that has been

found in all HSNEMD calculations so far. This in itself is of

considerable importance but the main reason for developing
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NEMD was to obtain the zero shear viscosity. To avoid the use

of large gradients Singer, Singer and Fincham lOtl adapted the

perturbation method of Ciccotti et al t68l to be used in

conjunction with the Lees-Edwards boundary conditions. The

basic idea of this method is to obtain the difference in

stress between two trajectories in phase space starting from

the same point, one unperturbed and one slightly perturbed by

a small shear rate, af - ls-l. This can be achieved either by

actually computing both trajectories in two separate MD runs

or more efficiently by using a Taylor expansion, truncated

after the linear terms, of the Hamiltonian in terms of the

perturbed coordinates. The response obtained has been shown

t68l to be equivalent to, at least in theory, the usual

Green-Kubo stress correlation function and as such can be used

to calculate the viscosity. This method relies upon the

cancellation of correlated noise due to the proximity of the

two trajectories in phase space. Eventually these paths must

diverge exponentially and the response becomes swamped in

noise. This means that averages have to be taken over a

number of different starting points to obtain reasonable

results. Unfortunately the perturbation approach has proved

only to be successful in the case of LJ argon 167,691. For

molecular fluids, except at low densities, the long stress

relaxation times cause the response to become lost in noise

long before the 'plateau' region can be observed L7A). Some

improvement can be made by applying delta function rather than

step function [7I] perturbations but in general the cost in
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terms of computer time make it no more efficient than the

usual Green-Kubo method. Where comparisons have been made

between the two [7I] the short time behaviour of the

correlation functj-ons are in reasonable agreement with the

difference between the two being either statistical or

possibly due to the fact that in the perturbation approach the

correlation function evaluated is at zero k whereas in the G-K

method the lowest k value j-s determined by the dimensions of

the MD ceII.

1.4 Results from and Conclusions of Si.mulation Studies.

The application of MD to the study of ttre flow properties

of liquids has produced information in areas where previously

littIe, Lf dny, had existed. Single component liquids of low

molecular weight have often been considered as 'simple'

liquids which to all intent and purpose behave as Newtonian

liquids. Experimentally this is generally the case as the

tj-me scales involved are much longer than the Maxwell

relaxation time and thus the frequencies and shear rates

available to real experiments are much lower than the

reciprocal characteristic relaxation time. What MD has

predicted is that phenomena such as viscoelasticity, shear

dilatancy, shear thinning and normal pressure differences are

common to all, even the 'simplest', of liquids. Furthermore,

information not generally available from conventional

rheological experiments, such as shear reorientation and the
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structure of liquids under shear, has also become available

through the use of MD.

The property which tras received most attention in NEMD

calculations is the shear rate dependent viscosity, n(r).

This is not surprising as the determination of the zero shear

rate viscosity has been the primary aim of most studies of

this kind and the shear rates used have ensured its

non-Iinearity. Consequently interest has centred on the form

of n(r) and the best way to extrapolate back to 2=g. Ashurst

and Hoover 172) used the Ree-Eyring (ng) theory of rate

activated processes 173) prediction

n(:r) = n(0)sinh-' (n)t(n) (r.4. r)

to

to

fit. their data for argon. Later Naitoh and ono preferred

use an asymptotic relation

Iin ro n(/) = n(0) - ,# (r.4.2)

, due originally to the mode coupling theory of Kawasakj- and

Gunton (KG) 17A1, for their calculations on hard sphere

systems. Ashurst and Hoover later pointed out. [75] that

Naitoh and Ono's data could equally well be fit.ted using the

RE inverse sinh curve. Evans t58l repeated and extended the

measurements made previously L727 on the LJ argon system,

close to the Triple point , to much higher shear rates. The
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results appeared to indicate

dependence (KG) despite its

a clear vindication of the

non-analytic nature, i.e.

*

Iin. dn(r) 
= _.

y+o 
dt

Further supportive evidence has also been found in the shear

rate dependence of the viscosity of soft spheres 176) and for

LJ argon at a different state point L77f and in two dimensions

for soft disks tSSl where KG theory predicts a logarithmic

dependence of n upon ,. For molecular systems the square root

dependence has only been shown to fit for low density systems

where there is }itt.Ie shear thinning LGA,Tgf . For a dense

model fluorine system UA) a systematic departure from the

f dependence was noted at the higher shear rates used.

For all the results mentioned measurements have only been

made in the region of / = I01or1012s-1 , due to the loss

of response at the lower shear rates and the excessive

temperature increases at the highest shear rates, which is

only a small part of the available range. This casts an

appreciable amount of doubt on the validity of extrapolating

back to y=g using the square root law r o1..any other proposed

functional form. Furthermore, the non-analytic nature of the

KG theory means that as ?.O S.-'
never been observed experimentally in real systems though in

general the magnitude of the viscosity change involved may be

less than can be measured.

. This behaviour has
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For real shear thinning fluids many empirical expressions

have been used to correlate n(r) data t78l but there are

relatively few which have been derived from molecular type

theories. In a series of papers L79,8A,811 Hess has developed

a theory to describe the non-equilibrium betraviour of the

alignment of molecular liquids. By considering the energy and

entropy contributions due to alignment and by formulating

constitutive laws HesS derives two coupled inhomogeneous

relaxation equations for the pressure and alignment tensors.

Their subsequent solution for the case of Couette flow results

in a prediction for the non-linear dependence of n upon ? of

the form

(r.4.3)

where r is a relaxation time and k and R are combinations of

unknown coefficients but for fluids where there is no

transition to a liquid crystal phase R=l l8A). Unfortunately

this theory does not apply for molecules which cannot align

and as such cannot be tested against the simulation data for

argon. Hess has, however, considered the case of spherical

particles t82l by examining the dynamics of the pair

correlation function under the influence of a velocity field.

The analysis again leads to an expression governing the'rate

of change of the pressure tensor and its solution for the case

of Couette flow imPlies that

n(i) = n<ol [r - k()'?)t/(n'* (it)')J
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n(r) = n(o) / O+Qrf 7

(1.4.4)

where 7 is the MaxweII relaxation time. Hess's predictions

remain to be tested thoroughly against either real or'computer

generated results but the indications are that for monatomic

fluids Hess's curve is at odds with the apparent

dependence.

More recently two papers have appeared [83r84] which have

presented a theory of non-newtonian fluid behaviour, derived

an expression for n(r) and then compared it with the NEMD

results of Heyes et aI [1], Ashurst and Hoover [75] and Evans

ts$l. Quentrec [83] uses linearized local order theory to

derive an expression for n(r) which is very similar to that

obtained by Hess l8A)

( r.4.5)

Quentrec further derives expressions for kq and rq in terms of

measurable equilibrium properties . Eu IAa1 uses the

Boltzmann equation, and its generali-zation to dense fluid

systemsr EIS a starting point for his treatment but obtains an

expression identical to that previously due to Ree-Eyring t73l

n(z) = n(O)sinh-' (tr)/Or) ( 1.4. 6)

Eu's expression differs from Ree-Eyring in that the value of

.k
v
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ae is defined absolutely from known parameters whereas ? is

generally treated as an adjustable parameter in the RE

formulation. In comparing their exPressions with the

simulation data both find satisfactory agreement despite the

fact that neither has realised that the results of Evans are

quoted as a function of the irreducible strain rate

( = 1 gg" for flow in the XY plane ) whereas Heyes et aI
' 2dy

tll and Hoover and Ashurst t75l quote results in terms of

,=#.

The rather confusing state of affairs concerning

eqns.1.4.3 and L.4.5 where one theory, only applicable to

alignable molecules, predicts the same result as another

theory ,only applicable to spherical molecules, is further

complicated by considering the Cross equation [85]

n(z) = n(0) + (n(0) - n(.) )/(L + CirlMl

substituting n(o) = n(0)(I - k) and rearrangi-ng gives for M=2

(1.4.6)

Once again the same curve is recovered. The Cross equation is

theoretj.cally based on t86l the assumPtion that shear thinning

,=rt#.H,]

n(o) = nfol[r - k(rr)'/(t * firlt>]
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is a result of deflocculation in polydisperse systems and it

is found to be quite successful at describing the n(r)

behaviour of many comPlex systems [86r87]. For monodisperse

systems the exponent M is generally taken to be equal to I not

2 so although it is interesting to note the equivalence of the

mathematical formulae it would be unwi-se to use any aPparent

fit to this form of equation to vindicate any of the

assumptions or methods used in the formulation of these

various theories.

Apart from the changes induced in the off-diagonal

elements of the pressure tensor by shear a common observation

made in many HSNEMD simulations has been the increase in the

hydrostatic pressure, P = * (t** * Pyy + Prs) , with also

(P**)r(Prr)tlPrr) . These normal pressure (or stress)

effects are of interest as they are known of in real fluids

t88] but have not been characterized at a molecular level.

The increase in hydrostatic pressure in HSNEMD simulations is

associated with the behaviour known as shear dilatancy.

Technically shear dilatancy refers to the increase in volume

which occurs when a material is sheared but aS most HSNEMD

calculations performed to date have been at fixed density the

effect manifests itself through an increase in the pressure'

In rheology there has been some confusion over the term

,dilatant, i89l as it has often been used to describe fluids

whose viscosity increases with increasing rate of shear ,

shear thickening. What MD has shown is that shear thickening
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and shear dilatancy are separate phenomena as simple fluids

,like LJ argon, exhj-bit both shear thinning and shear

dilatancy if sheared at high enough rates.

In a series of papers Evans and Hanley l90r9l,92f have

attempted to rationalise the behaviour of shear induced

pressure increases, and the related effect of internal energy

increase, within the framework of thermodynamics. They

postulate a change to the first law which allows for the shear

rate to become an extra state variable. In this formulation

it is assumed that P(i) is a known function at constant

temperature and density. Specifically

(1.4.7)
3

linoro p()) = p(o) + pllil2

where P1 is a state dependent constant. This equation is

originally due to the same theory of Kawasaki and Gunton 174)

which predicts a f dependence of n(r). As for the case of

n(r) the actual predicted values of the coefficients P1 and A

in eqns.L.4.2 and L.4.7 are not in agreement, bY two orders of

magnitude, with the results of NEMD calculations t93l although

at least in the case of LJ argon the predicted dependence has

apparently been observed t941.

The main consequences of the generalized first law and

the results of consistency checks have been reviewed

previously [93,94]. Numerical tests on LJ argon l9g7 have
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provided qualitatj-ve agreement with experimental findings that

imposition of Couette flow can alter the position of phase

boundaries.

Apart from being able to provide information on the shear

dependence of bulk propertj-es MD has the unique ability to

also allow a detailed and direct analysis of the microscopic

consequences of the previously described macroscopic effects.

At equilibrium the structure of the fluid is characterized by

the radial distribution function, g(r), where r is the scalar

separation of two particles. In a system under shear g(r) is

no longer a simple scalar function due to the distortion set

up by the flow and instead becomes g(l) , where r is the

vector separation. Various methods of representing g(r) have

been discussed i-n terms of expansions about the equilibriqm

g(r) [1,56r95,96] and have been accompanied by the results of

NEMD calculations of the relevant functi-ons for monatomic

fluids. There is a consensus between the three studies as

each shows that in the plane of the shear there is a net

reduction of the number of particles on the inside of each

coordination shell, with a corresponding increase on.the

outside, for the positive first and third quadrants. For the

other two quadrants the opposite occurs. Heyes et al tll have

gone on further to discuss the time dependence of g(r)

following a step functi-on increase in shear rate- They

conclude that the structural reorganization having the

symmetry of the plane of shear, xz solr is faster than that
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having x', y" or z? symmetry. Fr:rthermore, the reorganization

having xL or za symmetry attains steady state faster than that

having yL symmetry. This is obviously of importance as the

time dependence of g(r) is closely linked to that of the

pressure tensor. It is also interesting to note that

measurements of the directional number densities under shear

tl] show some tendency for atoms to form layers normal to the

plane of shear in monatomic fluids.

Associated with the anisotropic structural rearrangements

under shear are the consequent effects on the single particle

dynamics of the system. Naitoh and ono t56l computed the

shear rate dependent self-diffusion coefficient i-n the

directi-ons perpendicular to the direction of flow and detected

a systematic decrease in magnitude with lncreasing shear rate.

However, as their calculations were not isothermal the

diffusion coefficients had to be corrected for the temperature

difference. Heyes et al [1] calculated the diffusion

coefficients, excluding the shear component, in all three

dj-recti-ons for L.f argon at a number of densities and shear

rates. Isothermal conditions were maintained throughout so

the diffusion coefficients obtained were not subject to errors

ln extrapolation. At equilibrium all three were found to be

equalr ers must obviously be the case, but under shear the two

in the plane of shear increased more than that normal to the

plane. This result is more in agreement with the intuitive

argument that a decrease in viscosity is accompanied by an
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increase in fluidity.

Although most NEMD simulations to date have concentrated

on atomic systems there is increasing interest in the effect

of shear flow on molecular fluids. Un1ike atomic fluids

molecular fluids have extra degrees of freedom which allow

orientations and, in flexible molecules, conformations to

couple to the velocity gradient. The first of these, shear

induced realignment, is well known in real fluids as it gives

rise to the optical property of first order shear

birefringence. Less weII understood is the ability of shear

fields to induce conformational changes in the structure of

the constituent molecules. This is an important consideration

as shear flows are often used to measure the viscosity of

polymers and it is often assumed in the analysis of the data

l97 r98l ttrat these large molecules do not undergo

conformational changes in the presence of a velocity gradient.

These effects have been studied in several NEMD studies.

Evans 16A) has subjected a model diatomic chlorine fluid to

homogeneous shear and has noted the preferred alignment of

molecules in the positive first and third quadrants of the

plane of shear. As for the monatomj-c fluids chlorine also

exhibits shear thinning and shear dilatancy but as the

simulations were carried out at a relatively low density there

extent was not as pronounced. Allen and Kivelson l7g) have

also applied the HSNEMD algorithm to fluorine and carbon

34



dioxide modelled by two centre LJ models. They also used the

perturbation technique as refined by Singer et aI 167) to

measure the stress and aligment response functions and to

attempt to obtain the zero shear rate viscosity. Their main

interest was, however, in evaluating the parameters which

appear in and testing the predictions for the time dependence

of the stress and orientation of their generalized

hydrodynamic theory of transverse motion in molecular fluids.

They conclude that the theory provides a semi-quantitative

description of the time resolved responses examined. They

further conclude that the evaluation of the zero shear

viscosity from the perturbation technique becomes impractical

as the density is increased as the relaxation times for the

stress and reorientation become longer than the time for the

trajectories to diverge to such an extent as to swamp the

response in noise. At lower densities this is less of a

problem but then the steady state method is even more

efficient as there is less shear thinning so extrapolation to

7=6 is not as'problematic as at higher densities.

Interestingly the stress and the orientation evolve on a

similar time scale for these model fluids of small anisotropy

alth.ough initially the stress responds rapidly to the step in

shear rate before tending to the long time limit whereas the

orientation responds more gradually.

NEMD calculations on molecules with internal degrees of

freedom have been limited to one study of small alkane like
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molecules by Weber and Annan t991. They have applied the

sinusoidal force method 149) to two and three L,J centre models

of ethane and propane. The propane model additionally

included a bond angle potential with minima at 109o and tad to

allow a small degree of flexibility. Not surprisingly the

application of a sinusoidal shearing force to the propane

fluid did not produce any change in the proportions of

conformers since their equilibrium run of 25ps had only

produced one transition. They did note significant alignment

in both the ethane and propane simulations with the direction

of flow and between molecules. Overall their results are

fairly inconclusiver ds far as the response of flexible

molecules to shear is concerned, as they are based on short

runs, 5ps, with unrealistic flow fields on a not particularly

flexible molecule.

These simulation studies have provided much of the

essential ground work for what follows. The methods used in

this work have already been introduced in this section and

their exact details are given in chapter 2. Some of the

issues raised in this section witl form a recurring theme

throughout. What is novel in this work, however, is the

approach used whereby the effect of certain parameters has

been investigated by way of comparisons between similar

molecules. Thus, in chapter 3 results of simulations on
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chlorine type diatomic molecules of differing anisotropy are

given. In chapter 4 the ef fect of going from tt^ro to three

site models is investigated and in chapters 516 and ?. the

question of how important is the flexibility of a polyatomic

molecule with respect to itE rheological properties is

addressed.
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CHAPTER 2

METHODS

2. I Molecu1ar Dynamics

AIl the methods to be used throughout this work fal1

under the general heading of Molecular Dynamics (MO). In MD

the classical equations of motion for a small number of

particles (tt), typicallyt 102 < w < I0+, are solved numerically

subject to specific boundary conditions. Interactions between

particres are specified by well- defined potentials which

generarry take the form of effective pair potentiars which do

not necessarily, represent the interactions of isolated pairs

but at fruid densities incorporate the effects of the three,

four, five etc. body terms. This simplification reduces the

number of interactions to be computed to manageable

proportions. without it the cost of computing alr sj-gnificant

contributions to the potential energy would make MD

impracticabre. At least in the case of argon an effective

potential of the familiar Lennard-Jones (f,.f ) L2-6 form

,incruding short range repursive and rong range attractive

terms, has been found to give a good representation of the

Nobre gas fruid at a wide range of temperatures and densities

L|AAI with an appropriate choice of the well depth, e, and

collision diameter, o. The L,J 12-6 potential is certainly not

o(r) = *[t=J"- 
[gl" ]
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the only one to be used in MD calculations but its simplicity

and flexibility make it a natural choice when only bulk

properties are trying to be reproduced rather than the form of

the individual interactions.

Conventionally equilibrium molecular dynamics

calculations are carried out at constant volume, V, which

means that, as N is fixed, the number density, 9y!_, is

arso constant. rf the potentiar is conservative then the

total energy of the system, kinetic prus potential, must arso

be conserved. To obviate a large surface area to volume ratio

what are known as periodic boundaries are generarry used.

This in effect means that the primary cerl is reproduced to

infinity in three spacial dimensions so that it is surrounded

by 26 images of itserf , in three dimensions, generated simpry

by translation of the coordinates a cell length distance

orthogonar to the edges of the ceII. To maintain constant N

particles leaving the primary ce1I are replaced by the

appropriate incoming image particle.

With the constraints of constant NrV and energy, E, the

MD cerr wourd correspond to the microcanonicar ensembre of

statistical mechanics but the periodic boundaries force a

fourth constraint on the system that of conservation of linear

momentum. Thus this ensembre is sometimes referred to as the

MD ensemble. Usually the sum of the momenta is set to zero

initially in a MD calculation and its constancy, and that of
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the total energy, is used as a measure of the accuracy to

which the equations are being integrated.

2.2 MD for Atomic Systems with Continuous Potentials

The method of molecular dynamics originally described by

Alder and Wainwright t36l for use on systems of hard spheres

differs in the integration of the equations of motion quite

markedly from that for systems where continuous potentials are

used. In hard sphere systems the forces are impulsive and act

instantaneousry when a collision occurs. Between collisions

particles move in straight rines so the problem of sorving the

equations of motion reduces to one of obtaining the shortest

time interval to the next corrision. once this has been found

all the particle positions can be updated by the same time

intervar. This makes hard sphere carcurations particurarly

efficient at traversing phase space and also very accurate as

there are no errors in the trajectories calculated. Rahman

t37l was the first to demonstrate the use of continuous

potentials in MD. As the particles are subject to forces,

hence accererate, at alr times the probrem becomes one of how

best to approximate the trajectories of the particles or in

other words how to sorve numerically the crassical equations

of motion of the N particles. The usual way of solving

differential equations numerically is by finite difference

techniques which involve the use of a fixed timestep, ,A1.

Many such schemes have been suggested, e.g. ILAL), for
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integrating Newton's classical second order differential

equation of motion

3t = rilt
where Ei, ri and 11 are the force orr, mass and position of

particre i and thg two dots refer to the second differential
.2

w. r. t. time 
q r

I 'i 
= 

;F 
. One such scheme which has

become very populSi Ts that first used by Vertet EM2l and

results from Taylor series expansions of ri(ttAt) forwards and

backwards in time about Ei(t).

Il(t+at) = r1(t) + i1(t)at * Iiftl4g'+'ti(t),,4[3+ .... (2.#
2t 3! tp

r,{
Ir(t-at) = ri(t) - ti(t)at * iittl4g'-'fiftlgg3r ,qoe (z.A.z)

Summing eqns.2.2.1 and 2.2.2 gives on rearrangement

.,::

r1(t+At) = 2ri(t) - It(t-at) + i1(t)atz+ o(at4) (2.2.:ii
:.

and ignoring terms of order Atll for 5t smal1 and substituting

for f gives

r1(ttAt) = Zri(t) - li(t-at1 + g11t)at2 (2.2.4)

":,

This simple algorithm, often termed Verlet's algorithm, is

particularly useful as it requires the storage of only three

vectors fitt), r1(t-At) and Et(t) which is an important

consideration as available computer memory is invariably
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limited. The accuracy of the algorithm is third order in

positions but for the velocities subtracting eqn.2.2.2 from

eqn.2.2.1 and rearranging gives

ir(t) = (ri(t+at) - g1(t-at)r/hNi.+ o(ate)

This means that the velocities are only accurate to second

order but as they do not appear in the integration procedure

the trajectories remain accurate to third order. For

implementation in MD programs it is useful to define a half

step velocity y(t=Atl2) where

viftaV?) = [ g1(t) -qr(t-at>l/^t

,tr,"

(2.2.5)

so as to avoid having to reset two vectors when a particle

crosses a periodic boundary and to allow a crude form of

temperature adjustment by scaling these half step velocities.

The integration steps, once the forces have been determined at

time t, can no\,r be written as

- , yt(tiat /2) = ytft-aVz) + Ii(t)at
f,1

(2.2.8t
,, 

l

rI

glGtAt)'= Il(t) + vt(t+at/ztAt
.:E -1

Q.e';4)

I ti.:.. ,. :... ] ,]l

? (2.2;3,)

' 't"'

y[(t) =- [:u!(t-at /ZNi+ y*r+dlrn)!/z

algorithm, often referred to

42

This slightly different form of



as the 'leapfrog' algorithm,

the Verlet algorithm but is

the points mentioned. Once

be stored, g1(t), g1(t-At/2)

is algebraically equivalent to

computationally more desirable for

again only three vectors have to

and Ei(t) .

The main job of the computer in MD is the carculation of

aII the N(m-f1/2 possible pair separations from which the

forces can be carcurated. These separations must also be

subject to the minimum image convention which is the probrem

of finding out if, say, particle i interacts with particre j

in the primary cell or with one of its images in the

surrounding periodic images. This is ilrustrated in fjg.2.l

for the case of two dimensions. To find the nearest image we

have to find which of the vectors Ii;, Iij,, fL etc. has

the smallest modulus. This is equivarent to asking the

question if the primary cerr was centred on particle i which

image of j wourd arso be in this cerr. rt then folrows that

lr1.6l<t/2 GXr'y -where L is the length of the ce1l. The

procedure is then to obtain initially lij the vector

separation of the primary positions from

and then the following trhnsformations are applied

if r..
rJcr

r..
Ucr

-L/2, riJa=rijo+t

LlZ , * rijc = rij[ - Lif
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Figiure 2.1 Periodic iuages in 2-dinensions'
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for all Gxryrz . The scalar separation is simply lfi;l after

these transformations have been performed. On the computer

there are various ways of making this transformation more

efficient than using 'IE'' statements. One of these depends on

having a coordinate system with the origin at the centre of

the ceII and then defining the length of the cubic ceII to be

two units so that all coordinates lie between +1. A simple

double loop to evaluate alI pair separations incorporating

periodic imaging can then be written in FORTRAN as :-

Nl=N-1
DO LgA I=1,N1
I 1=IfI
xr=x(I)
yr=y(r)
zt=z(I)
DO IAA J=IL,N
xD=xr-x (J )
yo=yl-y(J )

zD=zl-z(J )
XD=XD-2 . O*INT (xD )
YD=YD-2 . O*INT (YD )
ZD=ZD-2. o*INT ( zD )
Qf, =[p :t*2 +YD* * 2+ZD,t * 2

lOO CONTINUE

rn this way the transformations are accomprished efficientry

in three lines using the INT function, which returns the

integer part of a rear number, rather than in six rines using

'IF' statements. Many other schemes are possible and the most

efficient will certainly be machine dependent to a 1arge

extent depending on the relative speeds of intrinsic

functions, 'IF' statements and integer/real arithmetic.

Once the separation has been obtained it then remains to
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find the force acting between the particles. For a

spherically symmetric potentiar such as the inverse power LJ

L2-6 type, fig.2.2, the forces must be equal in magnitude and

opposite in direction and are simply derived from

differentiation w.r.t. r. So if

o(r) = - 
[:J' ]

differentiating w. r. t.

to be

r gives the magnitude of the force, f,

*[FJ"

r =4(r) =ff[-F]".tFJ"]

+= ['{:]"-1FJ"ls

and the vector force, Etjr ds

Iti = -rtii =

Thus the LJ 12-6 potential, or any even powered LiI potential,

is computationarry advantageous in that we do not have to use

the slow SQRT function to obtain r from 
"' "" 

odd powers of r

do not appear in eqn.2.2.9. The use of periodic boundaries

restricts the direct sphere of influence of a particre to the

largest sphere that can be j-nscribed in the MD ceII thus

interactions are customariry truncated at distances greater

than a cutoff radius tc where r"(L/Z.

To perform the dynamics all that is further required to
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'Figure 2.2 Lennard-Jones L2-6 Potential.
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specify are the initial conditions, i.e. a set of coordinates

and velocities. Generally these are taken from a previous

simulation but if none exist coordinates can be generated by

reference to some form of crystal lattice. A favourite among

molecular dynamicists has been the face-centred cubic lattice

which requires 4no atoms to fill a cubic ceII and ttrus

explains the widespread use of sample sizes of N=32(n=2),

N=IOB (n=3), N=256 (n=4) etc. Although it is not particularly

important how the N particles are initially set out a face

centred cubic arrangement does have the advantage of arlowing

very efficient packing so that high densities can be chosen

initially without the danger of severe overlap of particles.

The choice of particle velocities is usually determined

by the temperature required , the constraint of zero total

linear momentum and that if the initial configuration is

ordered then there exists some degree of randomness to aid

equilibration. For these reasons the procedure generally

adopted is to assign random velocities from a

Maxwerr-Boltzmann distribution having a zero mean and a root

mean square velocity corresponding to the temperature

required. On many mainframe computer systems access is

possible to the NAG library which contains many routines one

of which, GO5DDF, is specifically designed for this purpose.

Of the various criteria given for the choice of velocities the

Ieast important is the distribution as this will quickly

attain the Maxwelr-Bortzmann form during equiribration. rt is



more important to ensiure that total linear momentum is zero

and that either the configuration or the velocities are random

otherwise the system can remain trapped in a small region of

phase space.

With the initial conditions specified it is possible then

to solve the equations of motion in a stepwise fashion over a

set number of tj.me steps to produce a complete history of the

evolution of the system through phase space. This provides a

record of the positions , velocities and forces of al1 the

particles for arr the time investigated and from these it is

possibre to evaruate the primary static and dynamic properties

of the system.

2.3 Evaluation of Equilibrium properties

The primary equilibrium thermodynamic properties of the

system kinetic energy (Xs), potential energy (e,), pressure (p)

and temperature (T) can be readity calculated for the

N-particles each step in the MD calculation from the following

formulae 3-

r{ t{

o=) ) o(rii) '.:
i=I J)i

r$ z
ffi=_)nili

2.L-l=I

l{

r = EIfrhTR .)_ 
,tui = EffiD*

i=1

(21 3; I)

.,$
,.*,f

r.*:iit .

(2,9.2)

:r-.

''.:'"'

l(2.3; 4)

' ;'1
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where the virial, Yi, is given by

Ntr
= ) ) #,"*r,
i=I jli

ru r..'-- ,r.f,i;

l

!
rti
i.

I

rn eqn. 2.3.3 the factor N-r occurs rather than N as strictry

speaking the constraint of constant total rinear momentum

reduces the number of degrees of freedom by three, i.e. as

Ervr = 0' :

I-I

}{rDJYJ=- I riyi
i=Lrilj

thus knowing the momenta of N-I particles and the sum of the

momenta of arl N particres means we can always determine the

momenta of the Nth particle. This fact has generally been

ignored in MD simulations and its importance depends largely

!t

)
i=l



on the size of the system as the percentage difference between

temperatures calculated with a factor N rather than N-I is

LAA/N. So for a N=1O8 system the error is -lE which is less

than the inherent error in the mean temperature, (Tlr due to

spontaneous fluctuations t661. Therefore, the approximation

T=2KE/3NK is a good one for systems where N is of order td or

greater.

As MD attempts to model a system of infinite size

corrections generally have to be made to the N-particle

potential energy and the virialr ds given by eqns.2.3.L and

2.3.6, due to the truncation of the potential at the cutoff

radius rc. To obtain these long-range corrections it is

necessary to introduce the radiar distribution function

(r.d. f ) g(r).

In words g(r) is a function of r , the scalar separation

of two particles, which is equal to the mean number. of

particles in a thin sphericar shell between r andjff_divided

by the number of particles in the same shell assuming a

completely random distribution of particles. The denominator

in this equation is simpry found by multiplying the vorume of

the thin she1l by the number density

(r+6r)e_ 4tt
5- ""]

which on j-gnoring terms of 8r2 gives the denominator as

N [4r
v L3
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!I fitr?er .
v

In MD calculations g(r) has to be calculated as a discrete

function by accumulating in a histogram, usuarly in the forces

double loop, the number of particres at a separation between r

and ;+8r. The resolution required determines the size of Br

and as _?-1_, the discrete function will tend to the actual

g(r). As the averaging procedure is carried out over all N

atoms per configuration 9(r) can be obtained to within a

precision of L+22 within a few thousand time steps depending

upon the length of the time step and the state point. In

fluid systems which j.nteract through short range 1argely

repulsive potentials 9(r) has the limiting values of g(r).+A

for r<o and g(r)+f as r--t@ indicating litt}e penetration of

the hard core of atoms and a decay of correrations between

atoms as r increases. In practice the use of short range

potentiars in MD, such as the L.T L2-6 form where the potential

energy at 2.5o is only -lt of that at the minimum, ensures

that correlations in the positions of atoms decay within a few

6 . This is important as otherwise much larger sample sizes

would have to be used to avoid correlations due to the

periodic boundaries.

Knowledge of g(r) allows us to calculate the mean

potential energy and viriar for the N particre system from the

following integral expressions 3-

5A



(O) =

(9) 
=

If
2J

o

o
Nf
2l

o

o(r)g(r)4rr2! dr
v

r d0(r) S(r)tltrzfi dr
drV

These integrals are simply the limiting cases, 6110 , of

summing up the average contribution to either the potential

energy or the virial from successive thin spherical shells of

thickness 8r containi.g t__-q(r)Crrr?er}{/V particles per shelt at

a distance r from the r.r"r"rr"* ,n. factor N accounts

for arr N particles and the factor of L/2 avoids counting the

contributions of the interaction twice. In practice the

energy and the virial in the range 0(r(r" are calculated

directly as this is simpler .rrd O.".u""1n. time dependence

these properties allows the carculation of the fluctuations

the system. Beyond the cutoff the expressions are used to

carculate the rong range corrections to the viriar (vrRLRc)

and the potential energy (pel,nC)

of

l_n

PBI,BC
}I
2

o

I o(.)s(r)4nre1 dr
:vrc
o

I r do(r) s(r)4rr2r drlE vrc

(2.8,,-?)
. ,)'

VIRf,rc
N

=z

For the LJ 12-6 potential the expressions geduce to

* [:"J1 F.1]
PBr,m " ryEr* 

[
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yr*r*c =* "1
F.J"- 3 F.ll

I

, 15

where it has been assumed that 9(r)=1 for r)r". For reoZ.5o'

the assumption that g(r)=1 is usually well founded and if we

take for example the case where o=3.4A58, !/k=ttg.BK and the

molar volume =28.48cm3 the actual molar values for PELRC and

VIRLRC are -445'i and 2670{ respectively. Furthermore from

eqn.2.3.5 it follows that the long range correction to the

pressure is -94A Bar (IBar = 105tt7n3';. The use of these long

range corrections thus allows us to make good estimates of the

large N limit.

Molecular dynamics is then a particularly useful method

of investigating the equilibrium and structural properties of

model systems and has been used on many occasions for various

atomic systems, e.g.[92,48,LA2). There are in theory any

number of equilibrium functions Lhat can be carculated given

that the positions, forces and velocities are known at all

times. What makes MD unique, however, is its ability to

provide information on dynamical properties.
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2.4 Evaluation of Dynamical Properties

Although it is possible to obtain a complete record of

the dynamical evolution of a collection of particles by

molecular dynamics this in itself is not particularly

informative. we require some means to interpret the wearth of

data in some coherent consistent fashion. rn MD great use has

been made of the method of time correration functions ll,a31.

In general the time correlation function, C(t), of two

dynamical variables A(t) and e(t) is defined as

c(t) = <A(s)s(t+s)>

where the angre brackets denote an average over the ensemble

and time origins, s. If the system is isolated then the

correlation function is independent of the time origin in

which case s is set equal to zero

C(t) = <A(a )s(t) > '

It also follows from this ll-g3l ttrat C(t)=C(-t) and
g(p)= 

0l*. The short time limit or c(t) is obviously <AB>

whereas at long times the limit becomes <A><B> thus it is

always possible to define a function which decays to zero by

rewriting eqn .2.4.L as

c(r) = <(A(o)-<a>)(e(t)-<s>)>.

If A and B are the same function C(t) is then known as the

auto-correlation function and arthough the actuar dynamical

variables can be scalars, vectors, tensors etc. the

correlation function itself is always scalar.
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These functions can be used to provide a measurement of

the amount of correlation between two dynamical variables and

the way in which the correlation develops through time. For

an auto-correlation function perfect correlation must exist at

L=A and can, therefore, only persist or decay as time

progresses whereas for correlation functions involving

separate variables it is possible for the correration to be

greater at some time other than L=A. Obviously there are many

possible correlation functions which can be calculated but

some are of particular importance as they are related to

transport coefficients through the Green-Kubo expressions

[45]. One of the most readily calculable and useful

correration functions of this type that can be obtained from

MD experiments is the velocity auto-correration function

(vacr'), cv(t),

cv(t) = <v1(0).yi(t.)> .

rt is related to the diffusion coefficient by the werl known

Green-Kubo equation

cv(t) dt .
.t

(2.4;4),=*l
o

This can be substantiated

Einstein relation for the

by reference to the corresponding

diffusion coefficient

D = lint.ro <(Ii(t) - ri(o) 727/6t (2.4.6,

(2.+.9

which on substituting for
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t
Ii(t) -Ii(o) =Jurt"l a"

o

and performing some algebra and integration returns the

aforementioned result. So from eqns.2.4.5 and 2.4.4 the

diffusion coefficient is related to the mean squared

displacement of particles and the integral over the vACF.

Thus in a MD calculation there are two possible ways of

calculating D and as it is a singre particle property resurts

of a high precision can be expected through averaging over arr

N particles.

The existence of two expressions for the diffusion

coefficient is also true for other transport properties. rn

the case of Ltre shear viscosity ,n, can either be related to a

mean squared centre of momentum displacement or to the

integral over the stress auto-correration function (sacr),
I
lC"tt) = (oc,(0)ocxp(t)), , where 6;, is an off-diagonat componenr

"r In" ."tr"". t.-rr"or,

As arready stated the stress is a collective property so the

amount of averaging is limited when compared to the vAcF

consequently the determination of R from eqn.2.4.6 is subject

to large statistical errors L48,49,5A7.

(2.4.6f
.,.

O

n=lfJc"t.)at.
o
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The actual numerical calculation of correlation functions

does not usually present any problems. The functions have to

be discretised, of course, and can consume an appreciable

amount of computer time when they are being calculated. Their

usefulness in the understanding of correlated dynamics has

been repeatedly underlined by many simulations particularly in

molecular systems where extra degrees of freedom permit

coupling between rotations and translations ILAA).

2.5 MD for Polyatomic Systems

As many aspects of MD are conrmon for a1l systems the

general method has been explained for the simplest case of

monatomic particres so as to avoid introducing comprications

at an early stage. For polyatomic systems the major problem

is dearing with the rotational part of the motion. For the

centre of mass there is no probrem as once the total force on

the morecule has been evaruated the equation of motion is the

same as for monatomics. There are at present two general

approaches to modelling polyatomic molecules. Firstly, the

atoms within a molecule can be held together and given the

correct geometry by the use of bond and bond angre potentiars.

These potentiars have to have deep werrs to keep bond lengths

and bond angles crose to their required equilibrium varues.

This in turn means that the forces from these potentials

change rapidly and thus require short time steps to be

integrated successfully lruS , L967.
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The assumption that the vibrations decouple from other

motions has been used in the second method of modelling

polyatomic molecules. In this case the atoms are fixed

together by rigid bonds and bond angles are also fixed at

specific values. Depending on the particular molecule

internal modes may or may not be prebent. rf the morecure is

entirely rigid then the problem reduces to solving the rigid

body equations of motion. For the first approach to moderring

poryatomic morecures the procedure differs very littre from

the monatomj-c case as the system is effectivery a colrection

of separate particles.

Studies on fluid systems composed of polyatomic molecules

modelled by the second approach began with the work of

Barojas, Levesque and Quentrec on diatomic nitrogen t3Bl.

They used a two centre L,J model consisting of two LJ L2-6

interaction sites joined by a rigid bond of 1ength I to

represent nitrogen. They used Eurer angles lwll to specify

the orientations of morecules and numerically integrated

Euler's equations of rigid body motion. Thj-s was fairly

successfur but suffered from the drawback that two of the

Euler angres become indistinguishabre if the azimuthar angre

tends Eo ao or LBao. This meant that the angle for a particurar

molecule had to be redefined from a different origin if its

azimuthar angre became too close Lo ao or LBao , otherwise the

solution of the equation of motion became unstable and the

total energy drifted. In their simulations of nitrogen Cheung
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and Powles [fgg] used the special geometry of the homonuclear

diatomic to reduce the normal second order differential

equation for rotational motion to a first order one. To

integrate the equations of motion they used a fourth order

predictor-corrector method L]9gl to solve for angular velocity

and a fifth order predictor-corrector for the centre of mass

motion.

To avoid the problems associated with Euler angles and to

generarise to any rigid poryatomic system Evans lna,4a) has

developed an algorithm which uses quaternion parameters.

These four variables, defined in terms of the usual Euler

angles, hop the orientation of a rigid body onto a point on

the surface of a four dimensional sphere. As this space is

Eucridean the equations of motion in terms of the quaternions

are free of singularities and results in two sets of coupred

first order differential equations which can be solved

numerically.

In the work of Singer et aI [39,11I] on linear molecules

yet another algorithm was used for the rotational motion.

This invorved the use of a'free flight'phase which arrowed

the constituent atoms to first move as if unrestricted and

then this movement was converted into an equivalent path due

to the restriction of the constant bond length. This form of

argorithm which allows a 'free fright' phase has been treated

formally and generalised to treating any comprex morecure by
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Ryckaert, Ciccotti and Berendsen taf3. This method involves

the sorution of the equations of motion subject to a number of

predefined Lagrangian constraints which have to be satisfied

at each step by solving for undetermined multipliers. Fincham

[ffZ] has shown that for any linear rigid molecule, where

there is only the one constraj-nt of constant bond length, the

method of constraints is particularly suited as the equation

for the undetermined multiprier reduces to a simpre quadratic.

For more compricated molecures the undetermined murtipriers

have to be found either by matrix inversion or by iteration

[4r].

The choice of algorithm to use depends to some extent

upon the morecure to be moderred. obviousry the constraints

method could be used for all molecules of ths type but for

rigid molecules the method of quaternions LnAl is

particularly elegant and more efficient than constraints

because it does not require any iterative procedures or matrix

inversions [41]. As previously stated one exception to this

is the diatomic case. The advantage of freezing out entirely

the vibrational degrees of freedom is that larger time steps

can be used so for an equivalent amount of computer time we

can sample more of phase space. This is one of the most

important considerations in MD. rn order to obtain meaningful

resurts for time averaged quantities the actuar duration of

the experiment must be chosen to be longer than the relaxation

times of all relevant processes in the system. This becomes
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particularly important as the molecules become more complex,

which causes the spectrum of reraxation times to broaden. As

the aim of this work is to investigate the rheological

behaviour of several different molecules, rigid and

constrained models of morecures have been used throughout to

al1ow systems to be studied under a wider range of applied

conditions. The algorithms used, constraints and quaternions,

require further detailed explanation as they constitute a

fundamentar part in the efficient simulation of poryatomic

molecular fluids. one way to approach this is to treat

increasingly more complicated morecules starting from the two

centre morecule then progressing to the general n-cenLred

rigid molecure and urtimatery to morecures subject to a known

number of constraints but capable of intramolecular

rearrangement.

2.6 Diatomic Molecules

Here we consider the case of a two centre molecule where

the positions of the atoms of molecule i and the centre of

mass (copr) are specified by the vectors Eir, ri2- and '81

respectively. If the masses of atoms I and 2 are nil and rnlat

then Ri can be calculated from

!t = (Iitmir + Iraptz)/ut (2.6;.1)

where lMleuirtuia is the mass of morecure i. The equations of
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motion t41l for the atoms and the COM can be written

t*= (E*+$*)/nik

E*Arr

where ittn is the force on atom k of morecule i due to alr the

other morecules and 9m is the force arong the bond joining

the two atoms. ,roro **ton's first law it follows that

r9*r = -Srab. i '(8l&*)

The equation of motion for the coM is of the same form as for

a monatomic particre and as such can be integrated without

difficulty using the 'leapfrog' algorithm. If we apply the

'leapfrog' argorithm to the equations of motion for the atoms

we obtain [112]

as

2.. F
Ei= )

k=1

....-.
rfir(ttAt) 

= 
g1r(t) + t1.(t-Ar/Z)x

gg(ttAt) = r12(t) + t12(t-at /Z)tt

+ RlrAt? + 91sAt2[ir [ir

+ It6Ata - qtrat'
lia fiia

(?,6;6,)

Subtracting eqn.2.6.6 from 2.6.5 and introducing the bond

vector

ilf .* ,Ilr --rid

h',
L[r.

- grJof*'qrtIl +
rizJ htt

;iF*
(8i'ryr,Fi

gives

r
;'!1 ( t+au), *,.'li(t),'+ ii(t.at /40r+
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il,

Now as 1$ft1r: must act along the bond vector the final term in

eqn.2.6.8 can be written as

qi.{l *+ I lat" = t!1(t)- [nir rizJ

where h is an undetermined multiplier. If we also allow

tu

. - - :,lir * li(t) +xr!1(t-at/zlt+i'pl'= 
+1jno:;-

i.e. ifi i" the bond vector after 'free flight' of the atoms

then

Ir(r+Ar)=ii+hlr(t):
\c

To determine h tm the bond tength is-aJ-ixed-

length, 1, is used. This means that

i ifCtPtl - la= o

i CIf *.h!1(t))e ' 18= 0

','- # u'1'* {t)'fr .ji-: ', ' (2.6r*})
Eqn. 2.6.LL is quadratic ir, ffi i" toor,u .i*nr,
from

_.I
ir.Ir(t) * /111ttl,ir)"- rttii - rt)i

.1

h,=, -

1a

and then fl(tt*t),i. can be calculated from eqn.2.6.LA. Having
--',obtained .,166t*lt)l the half step bond vector velocity can be

found from

. ,*-t(+at /z) = (Iitr+&r) - Ii(t)Y&ti " _

62



and the on step velocity from

1!1(t) =' (ii(t-at/z) + i1(t+^r/2), /2

The new atomic positions are then calcurated from the updated

COM position and the new bond vector

sir(t+at) = Et(t+at) . ["iffiJIi(t+ar)

ri2(t+at) = E1(t+at, - k-ffilli(t+at)i

Thus in this way the equations of motion of a diatomic can be

integrated by a reratively simpre argorithm which requires the

storage of eight vectors per morecure B(t), E(t-atl2) ,,.Er(*) '!"

,g#t},e I(t) , L$-N:\Z)'. ri(t) .- and ,Iz(t}, or just one more

vector per atom than for a monatomic simulation.

The introduction of the rotational degrees of freedom

means that the kinetic energy can be separated into two

components. The translational kinetic energy (fnXg) can be

readily calculated from

N

.rffi=*)"iit?;
1=1

but the usual expression for the rotational kinetic energy

(nrxu) is
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where I is the moment of inertj.a andi &r is the angular

velocity. As this algorithm does not use angular velocities

an alternative approach is to use the fact that the total

kinetic energy (fXg) is equal to the sum of the rotational and

translational kinetic energies

EINE = *.l, ,*i

llI
- rf,E = tjrrtniir * Diaiiz 

: 
* + Erre

il .i'

l.)_*rtir+nici.-ui&i I - t e.6.ti
.ial i

+ 
"irc = ir|r"rrttn * "rdt, - 

ui&i , ;- i: ] re.s,i;)"

t

Now differgfitiating eqn.2.6.1 w.r.t. time gives

i .,, !f *.(ailttr + qatis)/ttii ,, 
r

then substituting for''S1 in eqn.2.6.L2 and simplifying gives

a BilEr. = * I r##i: [ti, - 2trriiz * tial 
"

Differentiation of eqn.2i6.7 w.r.t. time means that
ir
i ir * ftt - ire,

and squaring gives

' tl .L -. . ./
r Ii = iir - ztirtta + iia :
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so from eqn.2.6.L2

l{

Erf,E=*)rtii 
,

i=1

where Pi = u11n12Al[. is the reduced mass of morecule i. For a

classical diatomj.c molecule ttrere are five degrees of freedom

three translations and two rotations. By equipartition of

energy it is possible to define three temperatures for this

system 3-

Translational temperature, TTEMP = 2TRKE/3(N-I)k

Rotational temperature , RTEMP = RTKE/Nk

Overall temperature , TEMP = }TKE/ (5N-3)k

In the equation for the rotational temperature the factor N

rather than N-I occurs because the intrinsic angular momentum

is not a conserved property. Therefore, there is not the

reduction in the number of degrees of freedom that occurs in

the case of linear momentum. It is, however, important to

ensure that on average the sum of the angular momenta is zero

otherwise the temperature calculation has to take into account

the net spin of the molecules.

65



2.7 Rigid Molecules

In this case a rigid body consisting of n mass points at

the positions '[r , Ia ' ....... In is consi-dered. The COM is

again given by

iljrj
N

)
J=1f,= Q.r.L)

''' 
-,g6''.,i

il

)Ej
i=1

For a rigid molecule the positions of the atoms relative to

the COM can be defined by fixed vectors which have the unit

principal axis vectors as their basis. So for a particular

atom its position is always defined by a vector

lfpj = (xp.grvp6"rzp5)'' where xpJ, Ipj and ipi are constants and

m- i, ? 
"rra-? "r" trr" unit principar axis

vectors which form an orthogonal set and

the fixed laboratory coordinate system.

will change as the molecule rotates but

The transformation from a principal to laboratoiy frame of

reference is simply

ri - E = rrj = *pj i * rp3,! * "nii.

, rrj = lrrrj
the transpose of the rotation matrix

from the principal axis vectors [I1O]

are defined w.r.t.
 ,1A

In time X, Y and Z

ffJ remains the same.

or

wrrere ,$$ is

constructed

(2.,7-*.,

,_-,- t.

(2.rts}

A and is

a

Ar=
=

t8't'2t.
:

(2.7,A'
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as'tT is formed from an orthogonal basis it follows that tII3l
, 

AT = A-r.
==

so therefore, multiplying each side of eqn.2.7.3 by A gives

$ri = rdJ' (2,?'s)

The choice of principal axes is governed by the condition

that the moment of inertia tensor I is diagonal i.!. the I*

terms are the only non-zero ones. r is given by the equation

|LAT 1

(2.7.6)
t.'i l'

where I is the identity matrix. In practice some or all of

the principal axes can be found from the symmetry of the

morecure but if necessary standard methods [rrg] can be used

to find the principal axes which diagonalise I.
=

Once the principal axes have been obtained the

orientation of the molecure can be specified with respect to

laboratory reference frame in terms of the three Eurer angres

(9, o, o)' .

n

= 

=.fr"r.sill - rn;rp;)
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The angles V n e and O are defined as the angles of rotation

about the axes shown in operations 1, 2 and 3 respectively of

fi9.2.3. Using these Eu1er angles the orientation can also be

represented by the four quaternions ILLAI :-

9r = cog(e/2)coa((V-ti) /2>

ee = sin( al2)cos((v-o) /2,

ee = sin(e/2)ain( (v-o) /2)

e4 = cog(e/2)siln((9io)/2)

These four variables are not rinearly independent as it can be

easily shown that they satisfy the constraint relationship
+r

..:.. i
1.. tl'!

1 (2.7.?\
1.,','

The Euler angles can be also be used to calculate the

principal axis vectors from

b"

( cosrDcoe$ - sin0sirs+rcoeo , cost0sintl, + sinrDcostlcoErg , einesiu0)

: '. *Fti

( -ein0cosf - cogDsiWcose , cos0co$Icoae - sinfeinP , cosrDsino)

Z = ( si$+rsino, - siaoco$lr, cose)

I[=

f=
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Figure 2.3 Euler angles.
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and

axes

and

thus the rotation matrix A from eqn.2.7.4. The principal

can just as easily be written in terms of the quaternions

the rotation matrix then becomes IIIAI

l=

- qi + qZ - q1 * q?, z(q+qr - eeea), z(eza+ + qaqr)

-Z(qaez + q+qr) ,
'..,Z(qaqr - 

ggQr)
2222

9e-92-9++9r

22
Qz+9++

lr .. t,,
s'.jl

. 
= 5'l

(r.Ifik

.,t'il2(qzq+ - 9e9r), -Z(eogr + ezgr), - q3 - 2
9r

The basic equations used in the rotational motion of rigid

bodies involving quaternions are [JIA,1l4l

JltT
' 
r:r: i>

(2.?.9),

j

(2.?.Io){p=S

utn* = Jp/I6

-9+ -{r Qa 9s

-9r -9s 9z

Qz 9r. 9+

Qs -9r 9r

:(2i:7r'i}}

I

l

I

is

ia

ir

,ir

qp"

hv

wpz

0

I
!e

2

9t

9e

-Qa

or

i= $,
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where J is the angular momentum and T is the torque. The

angular momentum can be calculated in the principal frame of

reference from

which as

YPi = Sirypl (2,?.14b

gives

I

(2. ?. 13t
n

rn =.)rrr3)oJYn;

and can be transformed into the raboratory reference frame

using the rotation matrix

{ = !rrp' tflr.lel
Once the forces on a1l tfr" 

"torr"" 
of a molecule have b""r,

computed in cartesian space the total torque can be calculated

from

n

{,'=rfrtn *i(qnitrril__ - ::)g

,, l.l

(2.7.vt?
l:.;

Having established which quantities are required for

handling rigid body rotations and how they can be calculated

all that remains is to integrate the equations of motion.

This immediately poses a problem as the form of the equations

of motion, coupled first order differential equations, does

not permit the straightforward implementation of a verret or

'reapfrog' type algorithm. rt is possible to use higher order

7A



predictor-corrector algorithms l].0gl fut Eincham [II4] has

pointed out that the numerical errors introduced by these

higher order algorithms become significantly larger than those

obtained using the simple 'leapfrog' scheme as the time step

is increased [69,114]. To obviate the problem of having to

use high order argorithms Fincham [rr+] has deveroped a scheme

capable of integrating eqns.2.7.9 and 2.7.L2 using a

'Ieapfrog' type formulation.

2.8 Algorithm for Rotational Motion using euaternions [1I4]

Using Taylor expansions forwards and backwards in time an

amount lVZ about t for ,J gives

r{rfr/z1 = {(t) - !11)atlz + i(t) (xnlTzt - ... (z.B,r)

t ,{(t+atls)}} .\I(t} r,i.(t)at /2 +'ift)Gtrul1u * ... . (2,8:;|e)

Subtracting eqn.2.8.1 from 2.8.2 gives

.r'l!

!(t+At/z) = !(t-at/21 + ltt)at + o(ate) (2.8,3i

which from eqn.2.7.9 gives

!(wat127 = J(t-at/z) + I(t)at + o(at3) tl,rrs::Lj

For the equation of motion involving quaternions applying the

7L



same form of algorithm at time t rather than t-Lt{g gives

I _..;g(s6&"). = g(t) + i(t+af,/2)Lhsf q*t?r-,. 
-

but

.i, ' "'', flir
I ",' (2{9-g

so as g(t*Atl2., i involves g{t"!tr'r) , the algorithm

implemented directly. In order to approximate a

E(WL:r Fincham [ffa1 uses a truncated Taylor

cannot be

value for

expansion

:--,ig(H,$t frl, = g(t) +' i(t)afffa + s161e;,-:r,rl

*:'

-:i-.r,{.: I.q' . ,,}

(r.B.s
. :,t .G]

g(t+Atlz) = g(t) + g(t)S(t)Lt/z
}li ,rP

(2.9.?)

.16.:&

The overall sequence of steps in the rotational algorithm then

takes the form [fI4] 3-

1) Begin calculation with {(t-., At/2), g(t) and T(r).

2') Calculate on step angular momentum from eqn.2.8.4

i,* -tid#tr" diil{t-&t 1?:} + I(t}sftr'&,

3) Transform lab. angular momentum to principal angular

momentum using the rotation matrix formed from g(t)

IP(t) - gttffi(W'

calculate on-step angular velocities
li i

. cT{i6,nr B .l'. 'r a
'fffi{#"r * rpu@}7f&

4) Use eqn.2.7.LL to
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5) Approximate g(ttdft#2)r.*'using eqn. 2.8.-l
t':

to calculate x(t+1ryl/Z) and Aft+8,/2) .

half step angular momentum

6)

7)

use g( L+'88/2)

Calculate new

8)

$*+Aulhy, = J(d.*atfer,.+' !(ty;*!._*. ^,

Transform to principat coordinate frame

j , fu(t*e7z) = !(t*etreryftrafi8rn_ '-

9) Calculate half step angular velocities

gH(*&trz') itu {n*( t +^*, lrh/t *=-* o=*rrr" S

LA) Obtain new quaternions from eqn.2.8.5

constraint ize the11 ) Using the

quaternions

g'(tra*,) = 
{estt+atn.- 

,.

where

The purpose of st.ep 11) is to prevent any numerical

errors accumurating which might lead to inaccuracies in the

trajectory. once the quaternions have been obtained it is a

simple matter to generate the new atom positions from the

updated COM and the position vectors tfeS)

Ai(t*at1 = P1ga61i * eti[+&]Io. *:
-rJ

can be seen the algorithm requires minimal store since
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only the three vectors !(t-'-/2), g(t) and T(t) need to be

retained at each step. The algorithm as a whole is only

second order accurate but tests on a three centre model for

cyclopropane [ffa3 have shown it to be more stable than either

a fourth order predictor-corrector or a constraints algorithm.

In contrast to the diatomic algorithm angular velocities

are required so the total rotational kinetic energy can be

calculated directly from

N

Rrf,E = ) *, r**rilj * r'y"fu3 * rrrp?n4 )
j=l

2.9 The Method of Constraints

In this case we consider the dynamics of a molecule

consisting of n mass points at the positionsi Ir r Iz, .....;,.''In.

in cartesian space and of mass. [g ,D2 r....... Dn . We

further assume that the morecure is subject to nc rigid rength

constraints of the form .lfi; | = dij . Thus a bond length is

preserved by constraining the distance between nearest

neighbours and a bond angle by constraining the distances

between three nearest neighbours. AL each step the total

force on each atom, ti, due to all intra- and intermolecular

potentiars can be calcurated from the positions leaving the

unknown Oi , the force due to the constraints imposed.

As for the diatomic the equation of motion is
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. .tiit*i''. 
(tr'tftlfr1qi! 

,_ . ..;'.....: ?;s',,I{

Implementing the 'leapfrog' algorithm to this equation we

obtain

-;:" hf**racd = rt(t) #f*t*-at'Fa) + $g1r r gf.lat.?7*,".*. ';._ ,(g.9,"q1

which can be written as

i; Wt*etl * g| r sr$.

where t[, i" the position after ,free flight, and

(2.4
i.r ;.

8rr =.il

91 can

it is

As the

of the

forces constituting

constrained lengths

only act along the direction

possible to rewrite SS1 as

r_srr = 2 hrJgijtt)
'|t 

'' .,--- I

where the sum over j extends to those atoms that form a

constrained pair with i. The probiem then is to determine

once again the set of murtipriers.-{*ffirf The methods by which
'.*r'

this can be achieved have been discussed previousry t411. The

particular version used throughout this work does not

expricitly calcurate the ,tlg). uut achieves the same resurt by
-r---r'
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an iterative procedure [41].

2.1O The Constraints Algorithm

which satisfy the constraint relation between atoms i and j.

Equation 2.Lg.L is quadratic in Si_JJand can be solved exactly

to give

,i sri=-nritrl'ri.i* , Q.I0'4)

I ',8i = s13(I;#,(f6e'*rq)0i , I (2. f0.SL,

76

After 'free flight' it is possible to write down for any

pair of constrained atoms an equation of the form

[d #.sitri(t)) - qi * E;ri;ft)rl'= oi,

,ttif,* tsi.;g5(*i ) ?* dtJ",.- 
- __.,t

] ,1 ,., 
,.,._,r_n.

I (a-,10;&,

+J
where l:iififJ e di -. SA,; is the multiplier.which ignoring all the

other constraints produces new positions

' t"rt -. -.,'rT s (ri + Siri r(t)) I @:frc(ii+siriJ
and

fl-,

, IJ = (Ij + g;g6.(t)')

rt follows from the fact that the forces of constraint on

particles i and j must be equal and opposite that

. .i,

(2.lq#.I
"'6' t

i'rl
(z:to.g)



8J = - s13(n1/(n1 +-n.;)) (2.10.6)

So it is then possible to determine Ei and Ij from

eqns.2.LA.2 and 2.IA.3. The next step then is to redefine

fi=gi and. fi=fj and then to pass to the next pair of

constrained atoms and repeat the procedure. of course the

satisfaction of the constraint between the next pair will

destroy that of the previous two so the process has to be

repeated. The procedure is terminated when aII the

constraints are satisfied to a specified tolerance, TOL, i.e.

when

lrrilf -"ai;lza1; < ro,, (2. 10.7)

The total number of iterations required per molecule is

largely determined by the tolerance. rn morecules where many

constraints have to be satisfied the evaluation of a large

number of square roots, egD.2.LA.4, can cause the time spent

in the iterative procedure to become a significant contributor

to the overall duration of the MD simulation. It is then

important to maximise the efficiency of this procedure and one

way to do this [ffS] is by using the following approximation.

The quadratic equation for the multiplier, eqn.2.LA.L,

can be written as

's$ +it)'* 2sijrij'riJ(t)' +" ri3 - df.; + !
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Ignoring the quadratic term gives an approximation to

stj =.(dij - ri3)/2(ri;:ru(t)).

Iij

:t!

(2.10.8)

It turns out that although this method requires more

iterations it is in fact faster in terms of computing time.

The satisfaction of the constraint relationship step can also

be accomplished efficiently with this procedure by rewriting

the tolerance condition, eqn.2.LA.7. Since we require

f triil - aiil< ror,*di.;

it follows that

f 
tdil + di.il( rcrird1.i + ?dry

so multiplying these two conditions together gives

lri3 - afu l. rorzaf; + 2*ror,*dt; 
.

For small TOL the ter* inrror.rirrg ffi so the

condition can be written as

lri3 - aful. ,*norrdir

which as can be seen requires nothing extra to be carculated.

Having satisfied all the constraints to within the

specified torerance all that remains is to update the atomic

positions

' $(t+at) = fi
and the half step velocities

f1('t+4tl2) = (f1(t{,8t.} i- ti(t))/at
The fulr step velocities are then carculated in the usuar way
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from

l&*tt* t'djKftft-eA'}' +. itfemkt&),#8- . -

The COM velocity can be simply calculated from differentiating

the equation for the COM position

-' ,,.1n t

n

) 
"tti=l

D

)"t ,,

i=1w. r. t.

For a system of

kineti.e energy

B

) "reiZu 
i, 

,
I

i=l i

such molecules

is then siuply

total tranelationalthe

i

f ,: .

as angular velociti

used the rotational

; r ffiSilu

es and principal rnoments of inertia are

kinetic energy is calculated from

t{
\1
L2

i=1

but

not

."- m{ff,*r.rrr -,,ffir*= 
[ ,i, [ ,lr* "iiir,|J 

- rErE 
"._.-., 

.

The corresponding

number of degrees

kind is given by

, tB ana deitlbeing the number

constraints, respectively, in

temperatures can be calculated from the

of freedom, N,fl; which for molecule i of this

.,i..r.-l

' Nf,1'"o &ift'* qA\l'

of atoms

molecule

79

and the number of

i. In three dimensions



the number of translational degrees of freedom per molecule is

always three so the remainder will be rotations.

2.II Polyatomics : General Considerations

So far an outline has been given of how the equations of

motion for polyatomic systems can be numerically integrated

given the forces acting on the morecule and the constraints

imposed upon it. The calculation of the kinetic energy has

arso been dealt with for each of the specific cases. Most of

the other properties are calcurated in the same manner as for

monatomics but there are some points to bear in mind.

For the total intermolecular energy the equation for an N

particle system of ni atoms per molecule is

The contribution to which within the cutoff radius , ,tc, can be

calculated directly. The equation for the long range

correction then becomes

t{ il ni nr i

, t = )_ ) )_ )"t,lrrl;1l) (z.Ir.li
i=I j)i k=I 1=I

:-;
(2.Lt.21

t
'.t

2O
pEr,nc=*FI","r4nrzdr

fg

where n" is the total number of atoms in the system

N

'""=)or
i=l



For this equation to be correct it is necessary. for tfre

cutoff radius to be greater than the largest possible distance

between two atoms of the same molecule otherwise some fraction

of the volume from ': r=r"{D. ', will be occupied by sites which do

not contribute to the intermolecurar energy. For consistency

it is arso recessary to ensure that half the box rength is

also greater than the largest possible distance between atoms

of the same morecule as otherwise a morecure courd interact

with the image of itself.

For the pressure tensor the usual equation is

"lt ,

,*I.i

(2. 11.3)

For polyatomic systems where the intermolecular forces are

non-central i.e. do not act arong the coM separation vector,

and the coM does not correspond to any of the interaction

sites the evaluation of the potential contribution,

can present a slight problem. It is always possible to

I=+[j, uitiii. j,),a,,r,, ].

,NN' I'=+ ) )ruuu ,
' i=l j)i

.lt, 
: .

(2.11.4I
.,t.,;,."t I

I

evaluate f9 "" 
it, stands but this means evaluating at reast

one extra vector in the forces doubre loop at some point and

storing aII the forces on molecule i due to molecule j. It

also means that the molecules must be looped over

8I



systematically where it might be more efficient to loop over

certain atoms. This problem can be avoided through recourse

to the following rearrangement IffO3.

Firstly, if we define a Po." as
-ag

t{

,,.,8k =+ )' l=1

tensor'

t{ n;

))'j)i k=l I

i;r,xil. .'r':-[r.. 1,ril )

(2.1118f
ni
tir,

) rip.;1!i1;1
,=]

where

Ir*ir=Eik*Sr1

and ,:!ni$ri is the force on atom k of molecule I due to atom

the COM ofNow writing the vector joining

atom k of molecule i as
t

Iiq.=Ii1 -Et
, =)Iik =IickfBi ,

and then substituting for both f11r and eqn.2.11.5 gives

of molecule j.

molecule i to

r t: l-n
-tL

l3)]Iq,s1'-i' i{
k=l 1=1

i' i'
k=I 1=1

'EL =+

, =I
,. /'' v

t{ ttI)
i=} J)i
t{N

))
1=1 j)i

[,=t* + R1) - (.j"r *

pi.iti5.;1 + rrq,!i1j1 + [;clfirik]

sincer t':$ekjl *-'{jifff. It then follows from the fact tha,t

!{

=,)
i=l

i'
I=l

Nt{ni
,) I-*
i=I J)i k=I

i'
k=1

l{

)
>i

Eijfir;r

a2

Ei.l



and

that

NN
= ) ) liirri

i=I j)i

N N ni ni N ni

) ) ,')'.r*rruir+riclfirik= ) )riq,ri1
i;f jti k;l 1;1 i=l k=l

!'=r:"-+i l'r'*r,n
i=I k=l

r3"=f.+i l'r,*r,u
i=I k=l

or

(2.11.6)

Thus the presaure tensor can be evaluated efficiently by

summing up the atom-atom contributions in the usual way in the

forces double loop and then all that is required is a simple

loop over aIl molecules to calculate the additional term. For

the normal ,pressure components there is, aE before, a long

range correction to be made which has to be adjusted in the

same way as the potential energy long range correction for

polyatomics.
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2.12 Homogeneous Shear NEMD

The methods described so far give a basic outline of the

procedures used to perform equilibrium molecular dynamics of

monatomic and polyatomic fruids. As arready discussed it is

possible to obtain information of a rheologicar nature from

either equilibrium MD (ruo) or non-equilibrium MD (UfuO). The

limitations of and the difficulties encountered in determining

the stress correlation funbtion from EMD 148,49,5A7 suggested

that the more fruitful approach to the problem 
"f 

.4g!!"!."q

the shear frow behaviour of morecures wourd probabry be NEMD.

Of the available NEMD methods for measuring rheological

properties those described by Evans [55] and Singer et aI 167)

appeared to be worthy of particular attention. As already

discussed both methods employ the Lees-Edwards (LE) t54l

boundary conditions to simurate shear flow but whereas Evans'

method [55] employs a large velocity gradient to produce a

steady state stress response Singer et aI 1677 use a

perturbatj-on technique [68] to obtain the integral of the

stress reraxation function. The actuar argorithms employed

here differ slightly from those given in the appropriate

references L55r67 I so it is _nggessary to describe the

algorithms used in detail.
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Figure 2.4 Lees-Edrrards boundary conditlons'
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2.13 Lees-Edwards Boundary Conditions

For both the direct and perturbation methods LE boundary

conditions were used throughout. These have already been

described in general terms in chap,I and the situation is

illustrated in fl-1.2.4.

Initially the simulation begins as an equilibrium

simulation with normar periodic boundaries. To be consistent

with the imposition of a constant shear rate, ln the position

of the periodic boundaries at some later time, t1, must be

dispraced a distance gLtt, where L is the length of the cerr.

In a numerical simulation L can be written as nrAt where At

is the time step. In a homogeneous shear NEMD simulation

these moving perj-odic boundaries have to be used both in the

forces double loop for carcurating the nearest image and for

determining where the image of a particle leaving the box

enters. The transformations that were required to achieve the

first of these in an equilibrium simulation have already been

given. Eor the non-equilibrium case where the shear is

applied in the XZ-plane they change to 3-

tg rzij < -L/2 , rx ij= r*ij +,LnrAt

tf rzij > L/2 , rxiJ = rxij - rLnrAt

t1'rxiJ ( -I, , rxiJ = rxij +

ifrxij) L, rxij=rxij

tg rciJ < *L/Z , rqij = roiJ *

if rqr, > L/2 , \j = rqlj -
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for cl=x, y,r.l As before these transformations can be carrLed

out efficiently" in FORTRAN using the INT function. To

determine the position of incoming particles a similar

procedure is adopted 3-

i,f rr, < -Llz , .rxi = rxi +,/IntAt

lf r"i > LlZ , rxi - rxi -_ fl,nrat

if tof <-L/2, rci=rO+L

if .of > L/2, rci="or-t

for' c=xrVr5'.

These then are the essential features of LE boundary

conditions which are common to all simulations which have used

them 1L,2,561. Where simulations differ is in the actual

details df how the fluid is sheared. In Lees and Edwards,

original paper t54l the actual imposition of the boundary

conditions alone was used to drive the system to steady state.

Naitoh and ono [56] and Heyes lr,?J changed the position of

the CoM of a particle an amount ,tLOi in the X-direction at

each step whereas Evans tSSl altered the velocities of

particres so that a least squares fit to the verocity gradient

returned the correct shear rate.
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2.14 Shear Algorithm for the Perturbation Method

In each of the methods used here the basic procedure of

shearing the fluid has followed a similar format. If we take

the simplest exampre of a monatomic fluid where the positions

Ir(t) ] and half step velocities ty(t-,U/Z)l are known

initially and let GLT = ,i,l,t' and GLTC - Q then the procedure

for the perturbation technique was as follows :-

1) Evaluate the total force on each mo1ecule, ft(t), in the

usual way w.r.t. the LE boundary conditions.

2) Move the periodic boundaries

GLTC=GLTC+cLT

and if GLTC > L/2, GLTC = GLTC - L

3) Integrate the equations of motion.

4) Add shear displacements in the X-directj-on using

rltt+at) = rx(t+at) + *rzat.

5) Apply LE boundary conditions for particles leaving primary

ce1I.

6) Return to 1)

Those thermodynamic functions which are normally

carcurated in equiribrium simurations, temperature, pressure,

energy etc., can be evaluated in the usual way using this

scheme. rn apprying the perturbation technique the approach

employed was to obtain the stress tensor, g = -8, as a

function of time at one shear rate , ?1, using the algorithm
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as described,

configuration,

rate L:e .

af-102s-1 which

fluids. The

between two

proportional

function and

and then, starting from the same initial

obtaining g(t) at a slightly different shear

In general l+, was set equal to zero and

is a very low shear rate for these simple

symmetrized XZ component of the stress difference

runs, 
!(t) , has been shown in theory t68l to be

to the integral over the stress auto-correlation

hence the viscosity through the equation

The extension of this method to polyatomic systems is

straightforward as all that is required is to substitute for

the coordinates of the COM of the molecule at step 4). This

in effect means that the shear dispracement of all the atoms

of a molecule is that of their COM.

2.15 Shear Algorithm for the Direct Method

In the direct method the idea is to produce a measurable

steady state stress response which differs significantly from

the inherent stress fluctuations. To do this it is neccessary

to use large velocity gradients which have the unfortunate

effect of causing the temperature of the system to rise. It

has been shown that it. is possible LL,2,561 to apply a large

gradient using the algorithm as described for the perturbation

method but this algorithm ignores the fact that there are

spontaneous fluctuations of the measured shear rate of a
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system even at equilibrium. rn a steady state NEMD experiment

using this method the hope is that these random fluctuations

will average to zero leaving just the applied shear rate as

being responsible for the measured mean stress. For the

perturbation technique this is less of a probrem as the random

fluctuations will be well correlated between the two runs and

thus cancel out so that the measured response is due to Ly

only.

An alternative method due to Evans [55] maintains a

strict control of the measured shear rate . The steps

invorved are, taking again the simprest case of a monatomic

fluid, 3-

1), 2l and 3) as before

4) Apply the LE boundary conditions to particles reaving the

primary cell with the additional conditions that:-

if rr, > L/2, ,ii = v*, - lI. 
,

Lf rr. ( -L/2 , v,li =. oxi + ,t

5 ) Reset the vetocities by using ah;Ar"*i"g procedure : -

i) calcurate a least squares fit to the velocity gradient, 7,

, from
N
\
l'xi"ri

., i=I
/ =-'tI

fz
l rrr

i=l
ii) carculate the mean linear momentum in the X-direction, U,u,
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.N
1\h=frlti'*i
i=1

iii) Reset the velocities of the particres such that repeating

i) and ii) would return ?, = ? and FL =,0 by

"ir - vxi - Fvlu1 + (? - ?' lr^

6) Calcu1ate the temperature of the system, Teal.

7) Rescale the temperature to the required value, $ieq., by

altering the velocities in the following manner

,i, = (rxi - ,tzirft",+ tryi-,
,

- t'&{ = vqi*b' r FYrz

where ib = (Treq/T"d#-'

8) Return to 1)

It is apparent from steps 4l and 7) that the shear

velocity of a particle is assumed to be consistent with its

position. Thus in step 4) if a particle has an x-direction

velocity of _!t'then it is assumed that its x-direction

thermal veloc.'' thItY, 
"ii , is defined bY

th
"-i = vxi -"Ycnt. (2.15.I)

Now if this 
:"::r"t-" 

crosses the *z face then

I "i, 
; 

"Il' 
I /(rzi*: L) = v11 -n*f, r-^- . 

-.-.-.
rn steps 6) an ed ro find 

"Htt
so that the temperature can be calculated and rescaled. ;

should also be noted that jH must also be used in the

calculation of the stress/pressure tensor.
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The extension of this method to polyatomic systems is

reasonably straightforward. For integration argorithms which

define the positions and velocities of the atoms relative to

the COM, e.g. quaternions, there is in general no problem and

the positions and velocities used throughout the scheme become

those of the COM. If a molecule does happen to straddle a Z

face such that some atoms have *ve z coordinates and others

have -ve Z coordinates then there are no inconsistencies since

one set of atoms will have their velocities specified relative

to the actual COM while the others will be relative to an

image coM outside the primary celI. where difficurties do

arise is when the actual positions and velocities of the atoms

define the motion of the coM. For example in the constraints

algorithm for frexible molecures the motion of the coM is

determined by that of the constituent atoms rather than by its

own equation of motion. Although the paths obtaj-ned from

either approach should be equivalent numerical errors arising

from the constraints being satisfied to a certain tolerance

can allow them to diverge slightly. As step 5) attempts to

zero the momentum of the system the question arises as to

whether to zero the momentum as defined by the COM or as

defined by the velocities of the atoms. rt is possibre for

the sum of coM momenta to be different from ttre sum of the

atomic momenta because if a molecure straddres a z face then

the shear verocity of some of the atoms wilr not be the same

as the rest if the molecure is forced to be 'dissociated' by

the periodic boundaries. To maintain consistency throughout
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these calculations step 5) has been applied to the COM at all

cases where at alr times the coM remains within the primary

cerl. For the constraints method the simprest way to do this

is to retain two sets of atomic coordinates. The primary set

are for the 'undissociated' molecure and at arr times the coM

is given by

where Bi must lie within the MD cerr. The second set [g']

resurt from apprying the LE periodic boundary conditions to

the first set tg] thus [r'] must arways be confined to be

within the boundaries of the primary cerl whereas some of the

tf] may not. If a molecule lies across a boundary then

ni
-l

Bi = )rry1ry /u1
j=1

'i nt
-t

Bi * ) "ryri;arij=1

when the coM crosses a boundary then the coordinates , and the

velocities if it is a Z-face , of aII the atoms of the

morecure and the coM are reset in the way described. The

second set of coordj-nates is required in the forces doubre

loop where it is essential that aII the coordinates lie within

the MD ceII for the LE periodic boundary conditions to work as

described.
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CHAPTER 3

DIATOMIC RESULTS

3.1 Introduction

The objective of this work was to use the technique of

molecular dynamics to obtain information concerning the effect

of molecular characteristics upon the rheological properties

of model liquids. It had to be recognized , however, that

from the very nature of the method that there are more

possible approaches to the problem than could be physically

realised. For instance in principle it would be possible to

vary all the molecular parameters, e.g. mass, bond lengths,

interaction potentials etc., at will giving an immense range

of model fluids that could be studied. With such a plethora

of choices a strategy had to be developed which would produce

some relevant results. One approach would be to evaluate and

compare the rheological properties of tried and tested models

of liquids but this would be of little use as the number of

variables that have to be changed would render any comparisons

worthless in terms of extracting information on the effect of

the molecular characteristics. It is exactly this situation

that the experimentalists find themselves in and by using MD

was hoped could be avoided. A second approach would be to use

purely hypothetical molecules, hard cubes or triangles

perhaps, which although they are more like1y to lend

themselves to an exact theoretical treatment bear little

resemblance to any real mo1ecule. The fact that a model
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molecule does not resemble any real one is not particularly

important in this case as we are looking at the way changes in

the molecule effect its flow properties. It could weII be

that to gain some understanding of the phenomena of shear

thinning, sdlr we first of aII have to find a system which

does not shear thin and then to find out what changes have to

be made to a1low shear thinning to occur. As it has already

been shown that L.T argon tll and even hard spheres t56l shear

thin we are at once looking for simpler systems. However, on

the other hand it may be better to keep some degree of reality

and look at the differences in the rheological properties of

two or more very similar molecules. In general it has been

this final approach which has been used in the hope of

maintaining a modicum of contact with the real world but

without the restrictions thereof.

As there already had been several studies of monatomic

fluids under shear LL,2r49r53r56,57,58,591 it was originally

intended to extend these kind of studies to more complex

molecules conseguently it was decided for several reasons to

start by looking at the next simplest molecu1e, the two centre

model of a diatomic. Eirstly, there already existed

interaction potentials which had been used to model adequately
4'

the equilibrium properties of such molecules 
"= _lti ll-g}l, Fhe ,

CIz and :Br2 t39l and thus the data existed with which the

performance of .a diatomic MD program could be compared.

Secondly, Evans 16A1 had already applied a steady state shear



method to chlorine at a low density in order to evaluate its

shear viscosity. This would allow a comparison between the

direct and perturbation methods of viscosity determination as

outlined in the previous chapter and that of an external

source. Thirdly, the diatomic model can easily be altered to

give a different molecule most simply by changing the bond

length to either increase or decrease the anisotropy.

3.2 Chlorine Mode1 and Computational Details

A program was developed to model the single component

homonuclear diatomic fluid chlorine. The model for the

interaction potential has previously been used by Singer et aI

t39l and is shown in diagrammatical form in fig.3.1. As can

be seen the model consists of two sites a distance I (ttre bond

length) apart which interact with sites of other molecules

through the LJ L2-6 potential

where !/k:=173.5K and o=3.3538. Initially the reduced bond

Iength, 
I, 

was set equal Lo A.6A84I and the mass of a

molecule was in aII cases f.fZS*10-H4g . The use of these

parameters has been shown t39l to give a good fit to the

experimental equation of state of chlorine along the zero

pressure isobar. The equations of motion were integrated

using the constraints algorithm as described for linear

o(r) = -[[;J"- FJI 
-
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molecules,

otherwise,

distance of

the energy

sec.2.6, with

o. g* roil+; . .

2.5o and the

and the virial

a time step of, unless stated

The potential was truncated at a

appropriate long range corrections

were made

3.3 Ctrlorine Results at T u26AK, PrA, t=A.6gA and 1*=I.O

The program was tested by monitoring the total linear

momentum and the total energy. No perceptible drift was found

in either quantity and the energy was conserved to within

+g.A5Z. A point was then chosen close to the MD calculated

tao3 zero pressure isobar at [* (= tk/e) - I.5 and

p&(*+*oglU)t. 0,48243 and equilibrium simulations were performed.

Parametrised equations already exist t39l for calculating the

total energty, U, the pressure , P, and the diffusion

coefficient, D, for this system as a function of temperature

and density. The results of two simulations for N=256 and

N=2A48 molecules, the latter using a link cell version of the

program (see Appendix I.), are shown in table 3.1 together

with the predictions of the parametrised equations [39] in

parentheses.

96



Tab1e 3.1 A comparison of the total energy, pressure and

diffusion coefficient as determined by EMD simulations on

model chlorine with the parametrised equations of Singer et aI

t39l at a reduced number density of A.48243.

T/K u/.1, nol-1 v /bar o/r0Ecuzs-l' Length N

of run
/ps

24.A 25626L.L

26L.4

.,-L2AAA 16+63

GL2A5A+79',) (29+64)

-L2446+25 4A+24

GL2A4A+7A) G4+64)

4.7+4.3

(4.3+A.4)

4.7+4.2

(4.3+s.4)

LA.B 2A4B

The comparisons in table 3.1 are quite favourable and

establish the reliability of the basic program. It was then

adapted for determining rheological properties by NEMD using

the two techniques discussed in sec.2.12. Previously Evans

|OAT had determined the shear dependent viscosity of a

slightly different chlorine model t39l

(o=3 .3328, t=a.63,e/y=I78.3K) at a simirar state point

(e*a,{=a.46L,C=, .532) using his homogeneous shear method.

The differences between the model and Lhe state point used

here and that of Evans were considered to be small enough to

allow at least a qualitative comparison between the methods

used

Starting from equilibrated configurations of chlorine at
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the state point (e*=g .48243, ttl^,t.5) the perturbation and

direct methods were applied to systems of 256 molecules. The

procedure for the perturbation method was to obtain the stress

as a function of time for an equilibrium run of Lsg time steps

(=1.2ps) and then for the same amount of time having apptied a

step function in shear rate, N , to the same initial

configuration. The response ag(t)i was then averaged over

twenty of these 'segments' . At the same time the difference

in the alignment tensor AD(t),, where D is given by
==

N

g = *) iri,

-_ 

__ i=I

was obtained also to monitor the response of the collective

orientation to the shear flow. With an actual mechanical

perturbation it was found that for a _{ of less than ""lq]

the stress response became subject to truncation errors

because of the small differences between the stress in each

run as compared to the magnitude. In this case a value of

-aAf,=126s' was used throughout to avoid this problem.

For the direct method a step function in shear rate was

applied to an equilibrium configuration in the manner

described in sec.2.15 and sufficient time was allowed for the

system to achieve steady state (-LAAAL|). The properties of

interest were then averaged over an amount of time ajudged to

give reasonable statistical precision. For the stress the

problem is one of producing in the system a response
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significantly different from the inherent uncertainty, -102,Pa,t.

This immediately imposes a restriction on the lower limit of

the shear rates that can be used as the viscosities of these

materials is generally -l$-3'lPa e so typically the lower limit

on the shear rate is, from 
^{/Yi 

-1g19r-1' . For these

calculations two shear rates were employed .f=6*10los:1 and

FI012s-1' which are in the same range as those used by Evans

lOA1. As in the case of the perturbation method ttre alignment

tensor can be calculated but this time the property of

interest is its mean value, .9r. Unlike the stress tensor I
is always symmetric and at equilibrium the average values of

the elements of the alignment tensor are (D*leA and

(D*)=1/3, for cxrF=xtytzt showing no preffered alignment of

the molecules. Under shear it is likely that the off-diagonal

component that couples most to the flow will be that in the

same plane as the ftow i.e. O:r;;. The effect on thexz

on-diagonal elements is less predictable but at all times

D +D' +I) =] .

xx yy zz

The significant components of g and I from the

these steady state calculations are given in table

shear rate dependent viscosities, n(r) = <a;2>/<*>,

results of

3.2. The

, and

orientation coefficients, Xd(r) *.(Dxll4f) , obtained from the

simulations are given in table 3.3.
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?/LoLos-L 
(o*r)

/ b.ar

4.992 LL2+22

99.96 2L26+49

(orr) Length
/bar of run/ps

-8!49 44.4

-L2L9+BA 4A.A

tlLo'%r,

4.992

99.96

x:!z

a.aL4+a.aa7

4.L33+g.AA4

(D ):1/3
22

g.aa3+a.aa9 -a.ag++a.gag a.aaL+a.ala

a.La2+g.aa4 -g.a+a+a.aag -a.a62+g.agg

xd(r) /'Ig-r."

(D >-l/3
to(

f/L}los-L n(?)e/mPa s

4.992

99.96

4.225+4.445

a.2L3+A.AA5

4.289+a.LsA

4.L33+A.AA4

Table 3.2 The mean significant components of the stress

and alignment tensors obtained from the steady state

calculations on chlorine aL,26AK.

-889+75

xx
7bar

I!61

vy
/bar

-45+61

-636+84

Table 3.3 The resultant shear viscosities and orientation

coefficients obtained from the steady state calculations on

chlorine at -26AK.

The results obtained by Evans lOAl for the viscosity of a

slightly different chlorine system are plotted, along with the

results given in table 3.3, in fig.3.2 as a function of the

sguare root of the shear rate. As can be seen Lheir is good

agreement between the two sets of data when one takes into

account the errors and the different model parameters used.

Evans 16A) estimates the zero shear viscosity to be

A.2423mPa s whereas a reasonable estimate of n(O) from the two
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points calculated here is 4.23+A.A2mPa s. Both curves show

litt1e shear thinning behaviour, as would be expected at this

high temperature, Iow density point, so the extrapolations

involved in estimating n(O) are quite valid and probably not

in error by more than LAZ.

The point of using two methods of NEMD was to e.valuate

their comparative usefulness. To do this for the alignment

and the viscosity the responses ,ecr(t) ana O&(til-are

plotted in f ig.3.3. From the ste-ady state calculations the

expected plateau value for the stress is

!ry= (A.23+A.gZ ) *IgL *L25 = A.A2B8+A.AA25pa and this is marked

on fig.3.3 as a dotted line. The best statistical fit of this

response to a single exponential of the form

gives the values n = O.224nPa s

piece of information that can be

is the infinite frequency shear

related to the integral over the

function through

written as

Oi'[t) =

and t - @.12ps. One further

qstimated from the response

modulus, qD" . As ,e*i&) is

stress auto-correlation

cs(t').dt'
t

^rhfo

S"e. 4t*l

and q(t) can be
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Figure 3.3 aor,(t) and AI)rF(t)
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then substituting for Cs(t) and differentiating w.r.t. time

gives

db (t)
x2-

af* = Af, Go Cs(t), *

Now as E{Q 
qD can be simpty estimated from the initial

slope of the stress response. In this case a value of Go of

1.9GPa was obtained which is the same order as that founa for

many liquids experimentally t231.

The information gleaned from the perturbation technique

is also theoretically obtainable from equilibrium MD by way of

evaluating the stress correlation function. From the chlorine

equilibrium simulation at this state point for N=2A48 the

stress was stored and correlated. As the length of the

simulation was only 1O.8ps (135OAt) the amount of averaging

was small but as there are six possible off-diagonal

components of the stress tensor,J (oxr* ozx)/z , (c{;1*,er;},|/2','',

']14] -id/1:li "ili1'.{*n-;;}ffi"
last three obtained by rotation of the stress tensor by 45o

about the x,y and z axes 177), and as each time step is a

possible time origin compared to the perturbation technique

there is much more averaging possible. The resulting

normalised correlation function futtl is shown in fig.3.4.

The shear modulus obtained from the mean squared stress,
,!.ii

't ft*,,o v<%(o)).dr*r ,

was 2.4GPa and although the integral over the correlation
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function is subject to large errors estimates of the viscosity

in the re.gion 60.+Lgg6t, which is the plateau region from the

perturbation result, give values of around, A.23+A.24mPa s in

good agreement with the NEMD methods.

For Allxz(t) :, fig.3.3, it is difficult to te1I whether the

response has reached a plateau value or not as the noise

begins to swamp the signal at around LAALL. However, if we

assume a relation of the form (D*r) = Xd(r)(r>, which is

analogous to the"Newtonian stress/viscosity relation, then

using the same ext.rapolation procedure for n(r) .an approximate

value of Xa(0)=0.3*L0-t=s' ,a" obtained. This then gives a

eO"!:: of L25"A.3*,10-12i=g.39*10-'19', which, considering the

approximations involved, suggests that .&{a} is approaching

close to its infinite time value.

The results obtained from Lhese initial studies have a

number of possible implications. Firstly, both the NEMD

methods used here and that employed by Evans l60f give results

which are in good agreement. This is an important result as

it implies that the viscosity measured is that of the actual

system and is, therefore, method independent. Secondly, it

appears that for a similar expenditure of computer time the

steady state method is a more efficient and more precise way

of calculating n(0). This is a tentative conclusion as it is

based only on the results at one state point. At higher

densities the degree of shear thinning wiII no doubt increase
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making extrapolations to\?=A difficult but as has already been

seen there are the problems in the perturbation technique of

deciding whether the stress has reached its plateau value and

determining what it is. This is further borne out by the

response for the alignment which even for this low density

point shows IitLIe signs of reaching a steady state value

before the noise becomes too great. The effect of increasing

the density can only compound these problems.

Thirdly, comparisons between the perturbation technique

and the Green-Kubo method suggest that, although in this case

there is a large difference in system size, both can produce

at least the short time behaviour of the stress relaxation

function with .possibly the correlatj-on function approach being

more efficient because of the greater averaging possible. For

the viscosity it turns out that both give similar values at

about the same time but without the steady state results it

would be difficult with either to put any degree of certainty

on the viscosities obtained. Where the two methods do

apparently disagree is in the value for'G6 ,1.9GPa from the

perturbation response and 2.4GPa from tt" *""r, squared stress,

without determining the actual error bars on these results it

is in fact difficult say whether they do disagree at all.

However, it is likely that ttre value obtained from the mean

squared stress is the more accurate as it is an equilibrium

property and probably in error by at most LAZ from the spread

of results obtained from the various off-diagonal components.
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A possible explanation of the disparity is that the O. -:

determined from the perturbation response is calculated from

the difference in stress one time step after the perturbation

has been applied and is thus only an approximation to the

initial slope

dAo (t) M (at). xz'' xz'
='dt at

which will if anything underestimate the limiting slope. A

test of this would be to perform perturbation calculations

with progressively shorter time steps but as' ,Gp is only of

minor interest it was not thought worthwhile to do this.

From these conclusions it was apparent that one of the

next steps would be to test these methods under less

favourable conditions at more interesting points i.e. where

the equilibrium viscosity is much higher and where shear

thinning is more pronounced. This would establish, for

instance, whether the perturbation method was of any general

use in these systems.

In a systematic attempt to evaluate the effect of

changing the molecular characteristics on the rheological

properties, a second model liquid was generated by extending

the bond length from L*=A.6A84L to I*=I.O whilst retaining e

and o constant with the intentj-on of comparing results with

those obtained for model chlorine. This immediately poses a
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problem as the actual extension of the bond length causes a

drastj-c change in the equilibrium properties. As we are

trying to isolate the effect of increasing the bond length

alone on the rheological properties the problem is to separate

this from the changes induced by Lhe different equilibrium

conditions. Ideally experiments would be performed at

equivalent states. E'or example certain monatomics modelled

with a L-J L2-6 potential with differing equilibrium

properties in real terms can be brought to corresponding

states by use of reduced variables LLgg7. However, for

diatomics the introduction of the extra variable, 1, makes

this far more complicated even for models of the same d and r!.

In the absence of any obvious corresponding states

prescription it was decided to perform the calculations at

states of approximately equal temperature and pressure. The

only justification for this being that this would be the case

in experiments on actual fluids.

To find the density which corresponds Lo P-A for the

1*=1.O model a number of short simulations ( s?ig$t) were

performed on a system of N=256 molecules at varying densities

at 264R. By a process of extrapolation and interpolation a

figure of e 
*=A.32L57 was arrived at as being close enough to

the zero pressure isobar to allow the desired comparisons. In

the same way as for the L*=A.6AB OIz a series of perturbatj-on

experiments were then performed starting from an equilibrated

configuration. Averages were this time taken over ten
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segments of I5OA[ and the mean equilibrium properties from the

unperturbed system are compared with those obtained from the

equivalent runs for the shorter bond length model.

Table 3.4 A comparison of the equilibrium properties

obtained for !*=L.A and \*=A.6A8 Clz from 1O and 2A runs of

1.2ps respectively. U=total energy, O=total potential energy,

Tt=translational temperature and Tr=rotational temperature.

l*u
/Jmot

6r T

/-.rmor /x

L.A -583A+8A -LL24A+4A 259.9+2.9

A.6A8 v-L2AAA t-l75AA 26L.L+L.A

$P
Jx /nar

258.8+2.2 26L.6+5.6 61+51

26L.6+2.3 264.4+2.4 16+63

Ig
7x

The combined effect of increasing the bond length and

reducing p* from 9.48243 to A.32L57 to produce systems at

about the same temperature and pressure can be seen to

decrease by more than a third the potential energy of the

fluid. The reason for this is quite simply the decrease in

the density of interaction sites.

The off-diagonal stress and alignment responses obtained

from these perturbation experiments on the ilt=l.O system are

shown in fi9.3.5. From the initial slope of the stress

response and the best fit of a single exponential of the same

form as used for the L*=A.6AB case the following values were

obtained 9=r.2GPa, n=O. A92rPa s and T=O.A77ps. A single

steady state shear simulation at /=L2.5*I0$fu-l',' of length 41ps
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(=5A6AA| ) produced the values of n(f)=A.L3L+A.A2mPa s and

XU('*)r= (A.2L+A.A7).]oL!. Using the steady state viscosity to

predict the long time value of the stress response gave

,&1")t=A.AL64+g.AA25Pa which is shown as the dotted line on

fi9.3.5. For the alignment the steady state figure for X;(/)

responses are

of the actual zero

quite attained

predicts a -'"AD*r(o!-=2.6+A.8. As the values of n and X6 used

to predict the limiting stress and alignment

likely to be, if anything, underestimations

shear quantities it appears that neither has

its long time limit.

Comparisons between the two systems reveal that the

viscosity , shear modulus, and best fit relaxation time are

aLL-4AZ less in the 1*=1.0 case. This is very similar to the

difference in the potentiat energies. There is also a clear

tendency for the l*=A.6A8 system to realign to a greater

degree and at a faster rate than the 1*=1.O system. This too

is probabty a result of the density being lower in the I*=1.0

case allowing the molecules more opportunity to randomise

their orientations and thus reducing the degree of alignment.

Somq justification of this hypothesis can be given by

comparing the relative free volume of the molecules. Assuming

that the effective 'volume', Ye, of a molecule is given by

that of a spherocylinder

v"=fFJ". ,--,[El'
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or * =I. =Eo
* {')z)f ,ots

which for I*=I.O gives vl =r .3Ag and for L!=A.6AB gives

vl=f.AAL. Now the mean reduced volume available for one

morecule, vI, , is simply given tv t/e! and so from the

densities 'VI'=3 .L]rA for L*=L.A ana v[ =2.A73 for L*=A.6A8.

The percentage free volume, ((vil,-"d)Z*WOO, are then 5BB

for 1*=1.0 and 52t for L*=A.Ur;-y ve can be

defined as that of two overlapping spheres in which case

u* = F" (r + l.sr*- o.sr*"),;

the percentage free volumes then become 668 and 55E

respectively. This is a very simplistic approach and the

difference may not appear large but to change the percentage

free volume from 52E to 5BE implies a change i" pl.from

4.48243 Lo A.4I958. This in turn implies, from the equation

of state [39]r Erl increase in temperature of *9AK if zero

pressure is to be maintained.

Ttrese preliminary comparisons establish a basis from

which it will be possible to qualify comparisons at a

different state. Intuitively it might be expected that a

Ionger molecule would produce a more viscous system what has

been shown here is that this is clearly dependent upon the

choice of conditions at which to make the comparisons. To

obtain further information from this approach it is necessary

LA9



to change the applied conditions. To increase the density and

maintain contact with the initial studies there are two

possibilities either keeping P constant and decreasing T or

increasing P and keeping T constant. The increased density in

either case would probably lead to an increase in the degree

of shear thinning and shear induced alignment. As ttrere is

some practical interest in the effect of high pressure on

liquids in the field of lubrication it was decided that

experiments would be performed at an elevated pressure.

3.4 Chlorine results al T-26AK, Pn,lGPar fi=A.6Ag and !*=L.A

To make the experiments at different conditions

worthwhile it was important that there was a substantial

increase in the viscosity to enhance the non-Newtonian

behaviour and to emphasise the differences between the two

model systems. It is known that many fluids show an

exponential dependence of viscosity on pressure II17],

n(P) = n(0)!*p(oe) r,

where c is the pressure coefficient of viscosity and is

typically of order tOee }0Pp"=tr .- t1171. Thus for an increase

in the viscosity by a factor of ten pressures of ^,IGPa are

required. This is also the kind of pressure that can be

generated in an EHD contact so this situation would also be of

practical interest.

To generate a high pressure equilibrium configuration, in

LLA



the 1*=0.6A9 case, without any knowledge of the P vs P,

isotherm the following procedure was adopted. A sample of 256

molecules at equilibrium at the original state point

(1=26aK,P-a,A*;a.48243) was compressed over a period of 6aa,at

by reducing the volume intermittentty (uLA&,| by about A.5Z

whilst maintaining the temperature constant by velocity

scaling. From the resultant pressure increase a value of the

reduced number density of Q.66 was deduced as being of the

correct magnitude to give a pressure of -IGPa. An equilibrium

configuration was then obtained at this density in the usual

manner and the perturbation technique was applied to determine

the stress and alignment responses. Averages were taken over

ten segments of 1.2ps each and from which the mean pressure in

the non-perturbed runs was calculated to be LL3A0+LAA bar.

To equilibrate a sample of 1*=I.A C]a at the same

temperature and pressure use was made of a program developed

to perform MD in the (Nrp,H) ensemble using the method

described by Andersen [1I8] and others [119,L2A,L2L). In

contrast to the usual MD ensemble (N,VrE), where the volume

remains constant and the pressure fluctuates, in this method

the volume is allowed to change in accordance to the imbalance

between the calcul-ated pressure, tg, of the system and the

required pressure, P, such that

.lV = (pc _ py)N ,

where M is a constant. This enables the mean value of the

pressure , (P), to be set to any prescribed value ;P..
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The procedure was then simply to start from an

equilibrium configuration of -{=t .A 
-CLz 

aL T=26AKo P-A and

then to run the 'constant' pressure program with Ii=rL3AAbar
whilst maintaining the temperature at 26AK by periodically

rescaling the momenta. After approximately t/l?rAilit tne volume

was deemed to have relaxed to the value corresponding to the

required pressure. This gave a reduced number density of

A.55L24. Once again an equilibrium configuration was

generated and the perturbation technique \rras applied with

averages being taken over ten segments. The mean

thermodynamic properties resulting from the unperturbed runs

for both versions of CIz are shown in table 3.5.

Table 3.5 A comparison of the equilibrium properties

obtained for 1*'=1.0 and lL=O.6g8 O'le from 1O runs of 1.2ps

each.

1* U
-a/t'rct'

P

/aar
T

/x
o

_t

/J nol '

L.A

g.6aB

-LAtsA+aA -L5649+4A

-L567o+LAA -23A3A+6A

264.5+2.2 LL53A+84

254.8+2.8 l-L3l-A+LfrA

The densification of the two systems, apart from

increasing the pressure, leads to a more negative potential

energy as the number of molecules residing in the sphere of

interest of a particular molecule is increased. Comparisons

with the results at the lower pressure (rabte 3.4) show that

the difference in potential energies between the systems has

LL2



dropped by -LAAA J nol=l i.e. between 15E and 2AZ the

difference aL P*A. The discrepancy in the pressure is

probably caused by the rather high temperature in the l*=1.O

case. The likely cause of this is the thermalisation

procedure used at the start of each new segment which

calculates the temperature of the initial configuration and

then rescales it to the required value before the dynamics are

performed. With averages being taken over ten segments only

there is the possibility that the thermalisation procedure

adds energy to the system more times than it takes it out.

Thus causing the temperature to be higher than required for

these runs. Over a large number of segments, however, this

must produce an average temperature close to that specified.

In an attempt to improve the signal to noise ratio , in

these perturbation experiments, a delta function strain rate

was applied for one step as this has been shown to be

numerically superior to the step function approach t711. In

this case the response is proportional to the actual stress

correlation function rather than to its integrand. The

off-diagonal stress and alignment responses are shown in

fig.3.6. These were obtained by numerically integrating ,

using the trapezium rule, the curves which result from the

delta function perturbation. The significant stress response,

6o---tt) ., has been fitted to the two exponential form suggestedxz-

Uy rCivefson and AIIen l7A)
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n(t) = n1(1 - e><p(-t/rr11,+ rg(1.* earp(-t,/tz))

for both cases. As before the initial slope,

", 
' , gives an approximation to Go. which

in this case is given by

' 'Gt = t\1/71 +*\Z/Tz' '

The parameters for the best fit and the predicted viscosities,

R=e1+fl2 , are given j-n table 3 .6.

Table 3.6 The best fit parameters to the form of two

&txz.'
=*af

exponentials for the stress

perturbation experiments on

responses obtained from the

L*=L.A and L*=g.6Ag aL T..26OK.

P-I . lGPa.

1* T1

7ps

L.g

4.648

4.85

4.24

L.2L

4.59

4.52

4.44

a
/mPa s

L.74

L.A3

8.9

8.2

From figs.3.6 and 3.7 and table 3.6 the indications are

that the situation at P";O has been reversed to some extent.

The larger stress response in the L*=L.A case suggests that it

is now the more viscous fluid. The shear moduli of both

fluids have increased, as might be expected, with the 1*=1.0

Cl? again increasing a larger amount such that the .gi*'" are

almost equal. There is also a close similarity between the

form of the responses themselves, at least initially, where,

from the fit to two exponentials, the relaxation times are the

tf2

/w

g.a8

a.g8

9r qe eo
/m-eas /npa s Tepa

114



same. For the 1*=o.6aB case it is not clear whettrer ,aoxz(t).

has reached its timiting value but for l*=1.0 ia 
"pp".t"-ah"

stress is still rising at the end of the L5A'A| that the

responses were followed for. This casts doubt on the values

given for the viscosities in table 3.6 which will almost

certainly be underestimations of the actual viscosity.

For the alignment there is no doubt that, in either case,

AD--_ is far from its long time value. The alignment response'x2

for the t'=r.618 is again faster than the L*=t.O C12, but

comparisons with the results al P*A show that whereas for

d=r.6Ag AD"; responds more slowly at the higher pressure for
,<z

!=r., the response of '\"1,'to the perturbation is, if

anything, slightly faster. The reasons for this are not clear

but it is possibly a density effect. At the low density limit

the scarcity of interactions will probably cause the rate of

realignment to be very slow and at high densities the

hinderance to rotations will have the same effect. In the

intermediate density region the rate of alignment will first

increase with density r Ers interactions between molecules

become more frequent, and then decrease as rotations become

hindered. This could possibly explain , to some extent, the

results for the rates of realignment.

Having applied the perturbation technique results were

then obtained at a number of shear rates using the steady

state method. The mean thermodynamic properties and the
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length of the simulations are given in

stress, resultant viscosity and normal

0P*'-%'') are given in tabre 3'8' and

table 3.7, the mean

pressure components

in table 3.9. the

tensor are shown.significant components of the alignment

Table 3.7 The mean thermodynamic properties obtained from

steady state shear calculations on the L*=L.A ana l*j0.6A8 CIa

systems aL T*264K and P;1GPa.

(rti=r.g)

,rll'toir

a.a

a.5a2

4.754

L.247

2.494

4.994

L2.54

(t=a.6sal

f/L}*oa-t u/l-rof{ o b-rql:: r /K P/bar

-LA38A+44

-LA42A+44

-LA35A+44

-LA35A+49

-Lg24A+44

-Lga9a+44

-9644+59

-L5784+44

-L582A+44

-L576A+44

-L5754+44

-L565A+44

-L549A+44

-LsA5A+54

259.9+A.L

264.slo.L

264.ofl.L

264.ofl.L

264.4!A.L

264.L!4.2

26s.s!4.4

LL36A+84

LL32A+54

Lr4gg+64

LL35A!7A

LL45A+74

LL6LA+44

L2A6A+54

Length
of run
/ps

64

64

136

TL2

72

72

32

Length
of run
/ps

188

LL2

88

72

4A

uA nql{ oA,qell T/R e /bar

4.824

L.243

5.4

L2.5

24.98

-L56AA+4A -2LOLA+4A

-L5594+49 -2A994+44

-L5424+34 -24824+34

-L5A6A+44 -24489+54

-L44gA+39 -L9864+3A

26s.LlA.L

26s.L!A.L

264.LlA.L

264.3!A.L

262.8!A.L

116

LL34A+74

LL37slso

IL6gA+49

L2g7A+74

L293A+34



Table 3.8 The mean

dependent viscosity and

the steady state shear

aL T-26AK and P-IGPa.

shear stress, resultant shear rate

mean normal pressure components from

calculations on 1*=1.0 and 1*=o.6g8 !lS,

(l*=r.s)

,ltoro]l _:rg'L/a",

4.542 242+23

a.754 3A2+47

L.247 5q3+84

2.494 776+53

4.994 LAL6+4L

L2.59 L87A+36

.\/
(f=a . oaa)

9/!oros-L o /barx2'

a.824 26L+7A

t.243 368+62

5.9 L2AA+58

L2.5 2957+42

24.98 3247+86

:rfi('/)/mPa s

4.8L+4.47

4.AL+o.62

4.44+4.68

3.L2+4.2L

2.A3+A.48

L.5A+4.93

P /bar
rot'

LL33A+84

LL3gA+LAA

LL2Bg+L2A

LL29A+64

LL39A+94

LL670+LLA

F y'bar
l4ri

ttgTa*Ma

LL46A+LLA

LL38A+L3A

LL57A+74

LL69g+84

L2g5A+64

F /bar
2Z'

fizsa+ta

LL36A+8A

LL4gA+8A

LL48g+74

LL7,A+LLA

L2464+LAA

n(?\/nPa s B**/bar

3.L7+A.85 LL39A+92

2.96+9.54 LL34A+LAA

2.44+4.L2 LL43A+L4A

L.65+4.43 LL650+L2A

L.3A+4.43 L22Ag+74

F*/bar

LL2gg+LAg

LL4AA+74

LL59A+L3A

L2AL6+L3A

L2924+84

Prr/b^'

LL37A+LAA

tL3SA+LAA

LLTBA+LL0

L255A+L2A

L3684+54

LL7



Table 3.9 The mean significant components of the

alignment tensor obtained from the steady state shear

calculations on the d]=f .g and L*'=O.6Ag $If systems aL 1 -26AK

and P-IGPa.

(f=I.o)

?/Lolos-t D -L/3vy

4.542

4.754

L.247

2.49

4.99

12.54

D
xz

a.a3a+a.aL2

a.445+a.ga7

4.466+a.aag

a.aga+a.aa6

9.497+g.aa6

g.2al+a.aa7

D;k -1 /3

a.aas+a.aag

a.ala+a.aL3

4.928+a.aa7

4.435+a.gLa

a.a7a+a.aL2

4.495+a.aa7

-a.aa7+a.aa9

-a.al-L+a.ag7

-a.aL6+a.aa6

-a.aa3+a.aLa

-a.aLB+g.aLa

-4.429+a.aa6

]zz-L / g

a.aa2+g.aag

a.agL+a.aL2

-a.aL2+a.ag7

-a.a*+a.ala

-a.asL+a.aL4

-g.a6g+a.aa9

D -T/3zz

-a.ga++a.aa6

a.ag1+a.aL2

-g.aL6+a.aag

-4.436+g.aag

-a.a5l+a.aa7

(f =a.oaa)

9/Lo[osll D*,

4.824 4.427+A.AA9

L.243 A.A43+A.AA5

5.4 A.Lg7+A.AA6

L2.5 A.LAL+A.AA4

24.98 A.L76+A.AA5

I* -r /g

-a.aai+s.aas

g.agL+a.ala

4,436+a.aLL

4.468+g.aag

a.LLg+A.Ag7

.,pw_L / 3

a.aa7+a.aag

-a.aag+a.aa6

-a.a2a+a.aag

-4.932+a.aa6

-9.a69+a.aa1

The shear viscosities are plotted as a function of f

in fig.3.B for both systems. As predicted by the perturbation

result the l*=1.g leliJ,is no\^, more viscous than its strorter

bond length counterpart. Ttre perturbation results apparently

underestimate n(O) by a factor of, at least, five in each

case. This underestimation of the zeto shear rate viscosity
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is a result of not being able to determine accurately the form

of the response due to its slow relaxation compared to the

time before which statistical noise dominates. C1early the

rise of Ao---(t) - to its long time limit must be particularly
xz-

slow .o***o an" initial relaxation and to compute the

full response using the perturbation method is, at present,

uneconomic.

3.5 The Shear Rate Dependence of the Viscosity

There is a 
.marked 

degree of shear thinning in both

systems with the f=I.0 case showing the noticeably greater

effect. The eventual result of this is that at the higher

shear rates the viscosities tend to similar limiting values in

each case. No fully satisfactory theory has ever been

produced which correctly predicts the shear rate dependence of

the viscosity although many have been proposed

173r74r78,79182r83r84r861. Some of these theories are

empirical in their approach te6l to the problem but others

specifically take into account molecular considerations. The

theories of Ree-Eyring (ng) t73l , Kawasaki and Gunton (KG)

Ll+1 and Hess l79r90r81l are examples of ttrese more

fundamental treatments. The RE and KG theories are

particularly interesting as RE theory is favoured by

experimentalists t18l whereas what data that has been produced

by NEMD has been interpreted in terms of KG theory. Hess's

theory is more recent and has largely remained untested but it
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does specifically take into account the alignability of

molecules. In an attempt to evaluate these theories and to

try and estimate A(0) the curves predicted by these theories

were fitted to the n(-r), data obtained for the chlorine systems

studied here.

The predicted form of the sh!ar rate dependent viscosity

is in each case :-

RE .n(f) = n(0) cinh-r(yrit4ftn)

ra(*)=n(o)-&# ':,
(3.5.2|

KG

Hess n(f) = nto)[r - t(rzrrl'/(n'* rrrrr)'lJ

In Hess's equation R is a function of frhr, but to f irst

approximations R=I l8A) so this has been used throughout. For

eqns.3.5.1 and 3.5.3 best fit curves were obtained by varying

the adjustable parameters , 
^(A) 

and ffi for egn.3.5.1 and tn(O)

, k and 4 for eqn.3.5.3, to minimise the root mean square

difference (nUSO) between ttre predicted curves, ,hr$,),, and the

actual data,;,1tr12;.i. The RMSD is defined as

.,,* n' (/t) )a r (3.5.4)

where &_ t" the number

in the KG prediction is

of experimental points.

of the form Y=mx*c the

(3.$ 3)

As the curve

best fit was

.**, = 
[*, ],n,r,, r

(3.5,I

L2A



simply found

-A, is given

-f,=

' l" d;:''.
,u nr:,1!{!,

' ts;&f,)
!l*1x,::i 

S

by the method of least squares where the

by

*,fn,,,,r{ - tji*l Ij,^,",]

slope,

-,f[ d
i=1

]"- 
[ i:,r I

and the intercept, n(O), by

[,[^,,,, 1 tj,r 411 
t"=Y=J#] tj'J,,,>\

.' ,l':_
' ,riil

jil l

(3.6{?.6)

r: 4.

n(o) =

The best fit curves are shown for both systems in

figs.3.9 and 3.Lg and the parameters used are shown in table

3.Lg along with the RMSD's.

rerr *f- d"o]

t2L



Figure 3.9 n(r) vs. lk, I*=I-0, T/260f,, P-lGPa, (a).

Fit to the predictlong of the theoriec of

Eeee (-), Ree-Byring (- -) and

f,awasaki-Gunton (-'-'-) .
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Figure 3.I0 n(r) va. ft, lt=0.608, T-260f,, P-lGPa, (a).

fit to the predictionr of the theories of

Eess (-), Eee-Eyring (- -) and

f,awagaki-Gunton (-'-'-) .
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Table 3.LA Best fit parameters and root mean square

differences for various predicted curves

viscosity data aL T*26AK. PolGPar a) for

all except the highest shear rate.

for

all

chlorine

shear rates b)for

Hess n(O ) /mPa

f,h/ps

k

RMSD/mPa

KG n(0 ) /rnP.

, A/l0i6nra

RMSD/mPa s

RE n(O ) /mPa s

-tlPs
RMSD/mPa s

(a)

r*=r.g Ll=g.6aB

4.64 3.48

35.9 L3.2

4.73 A .64

g.2a a .47

(b)

'*.ir.6g8

3.44

13.8

a .57

a.La

L!=L.A

4.5A

27.5

4.88

4.24

s
I

az-

5. 16

1. 14

a .36

4.67

97.2

a.22

3 .49

a.47

a.L2

3.49

29.9

a.Lg

5.8A

r.69

a.ta

4.67

LA4.g

a.2L

3.65

a.56

g.a3

3.49

31.6

a.a7

A comparison of the root mean square differences reveals

that their is little to choose between the curves on a

statistical basis. Qualitatively the Hess and RE curves

correctly predict the apparent lessening in the rate at which

the viscosity decreases at high shear rates whereas the KG

Iine does not. This is not surprising as the curve quoted is

only the asymptotic limit which should fit Lhe behaviour of

n(zII' as l-l-+A and not as -;y'qr;1. The infinite shear limits of

r22



the Hess and RE curves are n(c)=n(0xl-tr) and n(.)=0 , -

respectively so Hess theory predicts a second Newtonian region

which there is some evidence for in polymer solutions t781.

In the low shear region there are again differences. xs i+A

the slope gn(') tends to zero in both the RE and Hess'e
curves but for KG dn(f)=-ry:lc which means that the slope

is infinite at the zero shear rate limit.. On a practical

basis this is probably beyond experimental detection as the

changes in the viscosity involved are very small. A similar

argument holds for the apparent lack of any Newtonian region

for aII the n(r)i functions discussed. For Hess and RE theory

-ln(rl only significantly differs (-5t) from n(0) if U_!i]_
so for r in the region of -]01or there is a large region up to

t-*I09e-1 where the viscosity is.apparently-n(O). Even for ttre
g

KG expression an A value of *i!Q]"pq:1 - , typical of ah",

fluids studied here, means that shear rates up to 10os-1,' will

only alter the viscosity by -A.ImPa s which is certainly

undetectable using MD and, as the highest shear rates

achievable using experimental techniques are,a4i[g"r-tF, also by

real experiments.

AIso given in table 3.Lg are the best fits to aII but the

highest shear rate points, the actual curves are shown in

figs.3.Il and 3.12. As has been found previously l7A) this

procedure certainly produces a better fit to the KG

prediction. This is borne out by the RMSD's which are reduced

markedly for the square root formula when the highest shear
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rates in each case are omitted whereas for the other two

functions there is little change. This approach to estimating

Arc SiA viscosity is justified to some extent in that the KG

prediction is valid only as y+A.

These various attempts at fitting the n(r)' data do not

lead to any firm conclusions. It is clear that more accurate

data is required over a larger range of shear rates for a

number of different systems to say if any of these three

predictions accurately represents the data. As far as

determining n(O) is concerned this rather inconclusive result

means that there is a range of estimates for n(6). The zero

shear viscosities are consequently quoted as R(A)=5.2+A.7mPa s

for Lt=1.0 Glaf and n(0)=3.3*A.4mPa s for U#:FO.6A8 Cla.

3.6 The Pressure/Density Dependence of the Viscosity

Even with these rather large error bars it is still clear

that the effect on the viscosity of the increase in pressure

is markedly different between the two systems. The effect of

pressure on the viscosity is usually quantified in terms of

the pressure coefficient of viscosityr c, defined by

n(Pa) = n(Ptr)onrp(rx(Pa.- Pl)).

This coefficient

values obtained

was calculated for

are given in table

systems and the

together with the

both

3.11

(3.6. r
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pressures and viscosities used to determine it.

Table 3.11 The pressure coefficients of viscosity

obtained from the data given for chlorine at T,*26AK.

1*

L.A

a.6a8

As only two

and as the

P1/bar P2/bar n(p1)/mPa s n(Fa)/mPa s c/ae{L,

61

16

LL36A

113 r0

a.L3

4.23

5.2

3.3

3.3

2.4

On the basis of the differing a values it might. be

concluded that the response of the viscosity of two very

similar systems to a change in a state parameter is unrelated.

How significant this is depends whether the viscosity is

directly or only indirectly dependent upon the state parameter

in question. In the case of pressure it could be equally well

argued that it is the change in density, caused by the

increase in pressure, which is the more important factor. The

change in density/volume with pressurie is generally given by

the compressibility, B , defined as

ldv-TF. p=

which as V c L/p is also given by

-B=i#

widely separated state

compressibility is not

points have been studied

a constant at a particular
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temperature mean compressibilities have been estimated from

F=1ffi
P

where Ag=er-Pa , AFePr-PAll and p=(pt+pi)/2.1f The resultant mean

compressibilities, given ir, ;bI" 3.12 
"Iong 

with the values

of the densities and pressures used, indicate the 1*=1.0",{Slar

system is certainly the more compressible of the two. This is

a reasonable result as the compressibility is an inverse

measure of the ability of molecules to pack efficiently and it

would be expected that the compressibility decreases as L*+O

i.e. the sphere.

Table 3.L2 The mean compressibilities obtained from the

(3.6i'4t

data given for chlorine aL T*26AK.

rt Pr P2' Pr/bar Pz/bar -;F/GPa'

L.g 4.32L57 4.55t24 61 LL36A A.47

9.648 4.48243 9.66 16 11310 4.28

Having established the difference in compressibilities it

remains to be shown whether the viscosity is more a function

of density than pressure. To do this it has been assumed that

as P! a relationship similar to that given by eqn.3.6.1

might also hold for the density

, n(pa) = n(Ei)exljtc6,ka - n4,.
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With only two points it is not possible to test this

hypothesis but as for the pfessure it is useful to calculate

and compare the two coefficients. These are given in table

3.13. along with the various quantities required for their

calculation.

Table 3. 13 The density coefficients of viscosity obtained

from the data given for chlorine aL TJ26AK.

'cz 'B{P1)/mPa s n(fe?/mpa s

L.a , *ru:: aiszq a.L3

9-r1*

5.2

3.3

16.1

L5.Aa.648 9.48243 A.66 4.23

Compared to the pressure coefficients of viscosity the e6Tq; 
.1:

show good agreement considering the errors in determining ttre

viscosity. It could be that this is purely a coincidence of

the conditions studied and does not stand up to the test of a

more thorough examination. The implication if it is correct

though is that it is the densification that occurs under

increasing pressure, at constant temperature, that is the

important fgctor in relation to the viscosity rather than the

pressure change itself.
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3.7 Shear Induced Alignment

The effect of shear on the alignment tensor is given in

table 3.9 and is shown graphically in figs.3.13 to 3.16. At

these higher densities there is an increased amount of

realignment of the molecules as might be expected. Quite

clearly the overall trend is the same in both cases with

molecules having preferred alignment in the *ve XZ quadrant

which principally af fects the value of Dlr_ and l*. O" 
U'

increases the constraint relationship bo,*UrO+U 
rr=L'., 

means that

the values of rDri and iDr" must also change. It is found that

these two other components tend to decrease roughly by the

same amount for the t=A.6A8 case but with Dr. decreasing

noticeably more than I)r, in the t-=t.A case.

The one significant off-diagonal component of P i" tU-, ""
D..;. and D-- are effectively zero because of the symmetry ofxy 11
the shear. In both cases D*",increases continuously with

shear rate though.at the lower shear rates,D*, i" greater for

the !!=t.A system but at the higher shear rates the opposite

is true. Intuitively it might be expected that a longer

molecule would align to a larger extent Lhan a shorter one.

This would not necessarily:manifest itself in a larger value

of D--_. This is so because D__. can pass through a maximum andxz ,L
decrease to zero again as D-- =A if aII the molecules are

xz

aligned parallel to the x-axis. The maximum value of II_&
possible is O.5 which only occurs if all ttre molecule are

L2B



Figure 3. 13 Dxz(y) vr. fk, 1*=1.0 ( E ) and

I*=0 . 608 (a) , T-26014,, P-}GPa.
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Figure 3.14 D**( y)-l/g vs. fh, 1*=1.0 ( tr ) and

I*=0.608 (a), T-26OI, P-lGPa.
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Figure 3. l5 ,rr( y)-L/g vr. fH, I*=1.0 ( B ) and

I*=0.608 (A) , Tr260f,, P,,lGPa.
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Figure 3.16 Drr(f)-L/3 vt. ffr,, 1l=1.0 (B) and

1*=0.608 (A) , T-2601t P"rlGPa.
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aligned at 45o to the x-axis in the XZ plane. As this

situation is highly unlikely and there is bound to be a

distribution in the y direction any observable maximum will

almost certainly be somewhat lower than A.5. This is not the

case for 14;, however, which for aII the shear rates that are

comparable is greater in thej=f .O case indicating alignment

more parallel to the x-axis.

Two other orientation functions

calculated are the shear orientation

as l7g3

which have also been

coefficient, Xd, defined

(3.?1r:F* :.rx6(f) = 49, )/(f) ." i

and an extinction angle, 6i;, def ined previously ltZZl as

1l-.

.ge=it*'
x12

lot zz

(s.?,'2)
I

which is of the type measured in flow birefringence

experiments. The values of these two quantities are given as

a function of shear rate in table 3.14 for both the systems

studied and are shown as a function of ,f -in figs.3.17 and

3.r8.
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extinction angles obtained from the steady state shear

calculations on the 'Il=I.0 and L\=A.6Ag Str{ systems at T^,'26AK

and P-IGPa.

(' .I*=I. O )

t/lo1Ps-l i t3e(f),/ deg

Table 3.14 The shear orientation coefficients and

,xi(f)r/ns'

01*=o .6ag)

f,f]iglag-L fi6(ffis

a.542

9.754

L.247

2.49

4.99

L2.5

6.A2+2.33

5.99+4.89

5.32+4.64

3.22+4.22

I.96+0. 13

4.92+A.93

3.28+L.48

3.44+4.49

2.L3+4.L2

L.L3+4.93

a.7g+4.92

36.6+3.4

33.5+2.7

29.4+2.4

27 .3+L.L

,%(*) /des

38 .2+2 .4

34.8+1.2

32.L+9.8

a.824

L.243

5.4

L2.5

24.98

,i*
As found by Kivelson and Allen \TAJ for fluorine ,*dif).:

becomes distinctly non-linear in f when the density is

increased. rirdeed +X&(fh behaves in much the same way as r#]l

for both systems, fLg.3.8, implying some connection between

".*r12?.'x^ . d' 
"pxz$Tl and qm)1 atthough the natur'e of b*; tends to suggest

at -"a at i" *"V U. coincidental.
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Fi8ure 3.I? xd(i) va. fN,1*=1.0 (tr) and

1*=0 . 608 (A) , T-260It, P -IGPa.
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Figure 3.rB e.(f) vs. fk, lt=l.0 (tr) and

1*=0.608 (A), T-260K, P-lGPa.

Conparisong with the predictiong of Eecs'e
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The second functionr oer is subject to more errors than

Xa because of the combination of three quantities. At the

Iower shear rates the actual value of lDro- Drr) was less than

the calculated error and thus gave indeterminate results for

o",. At the higher shear rates the l*=I . O CliF has a

consistently lower value of e. than the I*=0 .6A8rGIi' which is

probably indicative of the greater amount of alignment in the

longer bond length system. Also included in fi9.3.18 are the

predictions for o.,as determined from the Hess theory. Hess

theory in fact gives predictions for aII the components of g

but these curves include undetermined constants. When

combined as in eqn.3.7.2 the constants cancel out to leave, in

the first approximation,

i 8e(r) tan-l(r/rrf,)t.

Unfortunately first approximation Hess theory, which is stated

to be valid for those systems which do not undergo a

transition to a liquid crystalline phase 18A7, predicts that

b9-=r+ 
for all I.. This is obviousry not the case and thus

not surprisingly the curves produced using eqn.3.7.3 and the

values 
"f 

ah from table 3.LA are not in agreement with the

experimental data.

To give a clearer picture of what the alignment due to

shear involves probability densities involving the direction

cosines of molecules have been calculated. The startj-ng point

I
2

, (3.7 3f "
h.

I3I



is the bond vector associated with each molecule .li=Iir-Itz .

For a homonuclear diatomic the individual atoms

indistinguishable so that a bond vector 11thas

alignment to one with a value of -lt . To avoid

degeneracy for a shear gradient in the XZ plane

direction cosines can be defined :-

are

an eguivalent

this

the following

D=
x

D=
v

D=
z

Lx,rzl/Lz

irti*tzi*
i" li,.l/i*

where i*, i, ana iz are the components of the unit bond

vector. This normalization ensures that equivalent alignments

with respect to the direction of shear give the same value of

D*, .I), and Dz. Probability densities were then obtained by

dividing the region between -1 and *1 into small equally sized

intervals of iAliol and accumulating in a histogram the number of

times a particular value 
"t 

O,o. occurs. It can be easily shown

that by dividing into regions of equal ary., effectively '.;Acoger

the resultant probability densities are flat for a completely

random distribution of bond vectors. Accordingly probability

densities, e(Do), have been normalized such that 
"!ra)=I 

for

all values of,D when the distribution is random.
_!r

The results obtained for all three direction cosines at

two different shear rates for both systems are shown in

figs.3.19 Lo 3.22. The averages have been taken over an

interval of 8ps in all cases for systems considered to be at a

steady state at the particular shear rate. At the lower shear
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Figure 3. l9 The nornalised probability denaities for

the direction cosines P(Dc) vs. D*

1*=0.608, f=l.25*10'o"-t, T-260I(, P-rGPa.
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Figure 3.20 Ar flg.3.19 1*=L0.
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Pigure'3.2I As fi8.3. l9 Ir=0.608, l=25'*l^oto!-1.
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figure g. ee Aa fig.3.19 I*=1.0, f=l2.6rlOlo"-t.
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rate , y=,1.25*10los-t in each case, there is some deviation

from a flat distribution for 
{t_l 

and p(Dr) whereas p(Dy) is

not significantly altered for either t'=f.g or L*=0.6AB C].;.

For p(Dx) and p(D/ there is a tendency for a symmetric

distribution to be set up with an excess of molecules aligned

in the *ve quadrant with a minimum in p(Dc) aLx-A.S and a

maximum aL a,+A.5. Comparisons betw""r, tt" t*o sets of

distributions at this lower shear rate show that there is

little difference in them in keeping with the results for the

alignment tensor.

At the highest sh.ear rates used the distributions become

more asymmetric for 'D-l and or. For pfO*): ttrere is a large
L

peak at D_-- O.8 showing that the most preferred orientation of-x
molecules is in the *ve XZ quadrant almost parallel to the

x-axis. . p(Dr)' shows a different distribution with an almost

complete lack of molecules aligned parallel to the z-axisr

Dr=tL.A. The majority of molecules have tve values of,D,

whj.ch again shows alignment in the *ve XZ quadrant. Ttre peak

in p(Dz) is at D, o A.5 which is equivalent to a bond vector

making an angle of 6A0 with the z-axis. These observations

hold for both systems even though the shear rates are

different. For e(0;) there is a tendency, certainly in the

f =A.6gA case, for alignment parallel to the y-axis, 0r=11.O,

to become unfavourable. As the y-axis is orthogonal to tt"

plane of shear this shows up as a roughly symmetric

distribution for P(Dy), with a broad peak centred at g,'-d whj-ch
v
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is in agreement with the demonstrated tendency for molecules

to align parallel to the x-axis.

3.8 Non-equilibrium thermodynamics

As discussea in sec.1.4 there has been some interest

shown in the thermodynamics of systems undergoing steady state

planar couette flow l9A,gL,92J. Han1ey and Evans l9A) have

argued the case for the modification of the first and second

laws of thermodynamics for such systems to explain such

phenomena as shear induced melting, shear dilation and the

ctrange in internal energy. Moreover, their HSNEMD simulations

on the mona.tomic L-.f fluid l9A) produced results for the

shear rate dependent pressure and internal energy that obeyed

the following functional forms 3-

I
P(f)=P(0)+Prrz

a

U(tJ"= U(0) + tJlfz

(3.8. 1)

(3.8.2)

where P@) and U(6) are the equilibrium pressure and internal
s

energy and 'P, and U, are state dependent constants. The
-3

origin of t}:re $ dependence is the same theory which
Ipredicts a * dependence for the shear viscosity ll+1.

To compare the changes induced in the systems studied

here and to test the validity of eqns.3.8.1 and 3.8.2 the
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function"iM "r,aM are given in

table 3.15 and in fiss.3.23 and 3.24 ryF#***rand l*ffiI{qi
----:- 

!r.l

are plotted as a function oe fi|ffi. From eqns.3.8.1 and !"

3.8.2 plotting these functions impliee that a etraight line

should be observed of slope 3 /2. A,t the lower shear rates the

estimat.ed errora ir -t' and ffi,i-are larger than the actual

values so only the highest three shear rate points are plotted

in figs .3.23 and 3.24.
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the .text,

.n" i 1*=r.o

obtained from the

and It=O.6A8 C!2

steady state shear

systems aL TI26AK

as defined in

calculations

and PnIGPa.

TabIe 3.15 The functions AG(r) and ,${I(}J,,

on

:I*=1 ' 
g

ylto'"t;
a .542

4.754

L.247

2.49

4.99

L2.54

L\s.ow

f/L}los-t
4.824

L.243

5.4

L2.5

24.98

ilogro(17loros-1 ) :,'LP(f)lbar ,LtI(y)/{ rol-r

-4.299

-a.L23

4.496

4.396

4.698

L.997

-44+99

4A+LAA

-LA+LAA

9A+LOA

25A+8A

7AA+94

-44+64

2A+64

2A+64

14A+64

294+64

7 4A+64

t.

1,

*

*,

..i '

{aE(r)/btr',Au(f,)7J;uol-l

-4.484

a.a95

4.699

L.497

1.398

3A+L2A

6A+LLA

299+LLA

764+L2A

L62A+LgA

70ILLA

8A+LLA

259+LgA

6LA+LLA

L27A+LAA

It can be seen from table 3.15 and the graphs that both r;

been found in all previous HSNEMD simulations. The latter of

these effects is also known as positive shear dilatancy and is

weII documented for real systems te93 where it can be observed

in the more usual form as an increase in volume upon shearing.

In these simulations the fixed volume causes the pressure to

Logro(*/loroi-t )
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figure 3.2g togroAP(f) vB. 1o8.of , lt=l.0 (-A-)

and lt=o.608 (- -tr- -), T-260I(, p-}opa.
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Figure 3.24 LogroAu(/) vB. logro/, Il=I.O (-A-)

and l*=0.60g (- -tr- -), T-260f,, p-IGpa.
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rise instead.

. j-,*'.;'r::'.
For the limited amount of data availabLs- 'Ae(r),: and ' Ailr(r)

show an apparent power dependence i.2. However, the slope in

all cases is *t.A significantly lower than the 1.5 observed

for L-iI argon l9A). The data was consequently fitted to the

forms
aA 

-a, 
_ *_ 

.,Ap(I) 
= pi(f /L}ros-t )" ,,,= ' 

_' , (8,:8:,p,

and

. -, , Al(r\ = U{*/t0t'ot-rrb

and reasonable results were obtained using the parameteis

Table 3.16 Best fit parameters for the data obtained for

the shear rate dependent pressure and energy to the forms

given in eqns.3.8.3 and 3.8.4.

11 prlbar I 'urrlJ.rex 
t 

b

L.A 35.2 1.18 5L.2 L.A6

4.6a8 sA.L L.A8 48.1 r.A3

As well as the slope there is^ also a close similarity in

the magnitudes of ,8(r)i and AU(/) dor ttre C=t.O and 
-t=A.6Ag

Cli systems in the rather narrow range that can be compared.

The similarity in these static properties contrasts markedly

with the differences found between the systems for such

dynamic properties as the viscosity and the alignment.

(3;B.il
'/
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As shown in table 3.8 the pressure increase that occurs

upon shearing is not uniformly distributed in the three

cartesian directions. To clarify this the set of functions

(eqn.3.8.5),

on the l*tt. O

aPddlf] ,

steady

systems

--,,N*(/) 
= Ps(r) - P(r)

have been carcur@ in table 3.L7.

sxryrz. (3.8.51

as defined in the text,

state shear calculations

aL T-264K and P-IGPa.

N rr(f")/bar

-74+84

-49+LAA

5g+Lga

3A+LgA

t4g+L2A

4AA+LLA

aPrr(f')/bar

3g+L2A

Lg+LLA

L8g+LLg

489+L4A

754+64

Table 3.L7 The functions

obtained from the

and It=O.6A8 Cle

tu
l/101qs-1

4.542

a.754

L.247

2.49

4.99

L2.54

tu
f /Iatos-L

4.824

L.243

5.9

L2.5

24.98

P(*)/bar

LL32A+54

LL4AA+64

Lr35A+79

LL45A!14

LL6LA+44

L2A6A+59

LL34A+79

LL37A+54

LL6gg+44

L2A7A+74

L2934+34

AP (*\/bar
xx" "

Lg+LAA

-LA+L2A

-74+L3g

-L6g+94

-22A+LAA

-394+L2A

^P 
(*\/bar

W'-,.'

5A+Lsg

5A+L2A

3g+LsA

L2A+LgA

8A+94

-LA+1A

,P(f)'/bar aE,o(/)/bar
_\{)/o^'

-74+L2A

3A+94

-LA+LAA

-69+L5A

-LA+84

sslLLa

-34+LLA

-L7g+LsA

-424+L3A

-734+84

At the lower shear rates the

too large to determine any clear

error bars are once again

trend but at the higher shear
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rates it can be seen that. p____(*><P(r) , P---(r)z P(f), and-xx _lry- _"'
Pzz(Y)>P(Y, , These normal pressure effects are well known in

real systems and lead to a number of flow phenomena such as

the Weissenberg effect and extrudate swell t981. As the

pressure is largely determined by the configuration of the

molecules changes induced in it by the shear are the

macroscopic manifestations of the underlying microscopic

structural rearrangements.

3.9 Shear Induced Structural Changes

In MD the structure of fluid systems are generally

characterised in terms of radial distribution functions

(rdf's). For a diatomic molecule the most readily accessible

are the site-site rdf, g(r), and the COM-COM rdf, G(R). At

equilibrium these functions adequately describe the structure

of a diatomic fluid because of its isotropic nature but under

shear the strucure becomes neccessarily directional dependent

so these rdf's tend to average out the structural changes.

This is particularly true for the site-site rdfs, which are

shown, along with the COM-COM rdfs, at a range of shear rates

in figs.3.25 to 3.26. For the shear rates studied here there

is no significant change in g(r) for either the l*=1.g or the

!=A.6AA CIa. The peaks at r=1o and 2o are those due to

nearest and next nearest neighbours in both cases but whereas

the Lt=O.6O8 has an intermediate peak at -L.6ot corresponding

to the second atom of a molecule whose other atom is in the
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nearest neighbour she1l, in the I*=1.0 case the bond length

also corresponds to the next nearest neighbour distance so

only one peak is observed.

For the COM rdf, G(R), noticeable changes do occurr trs

the shear rate is increased, in the nearest neighbour shell.

The peaks in C(n) at -1.3o for 1*=g.6A8 and ,'L.46 for L*=L.A

and the first and second peaks in g(r) are consistent with

pairs of molecules forming a 'T' configuration. It appears

that this 'T' configuration becomes less preferred at higher

shear ratesr ds is shown by its decreasing height in both

systems, and is replaced by the parallel configuration which

gives rise to a peak at *-Lc:.. This is particularly clearly

shown in the t=A.6Ag case where at the lowest shear rate

there is only a shoulder which develops into a peak at the

highest shear rate. These changes are consistent with the

observed increase in alignment and the increase in internal

energy which occurs as the lower energy 'T' configurations are

replaced by the higher energy parallel configurations.
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3.LA Conclusions

From these initial studies a number of significant points

have arisen concerning the methods implemented and the results

observed. Firstly, it is clear that as a technique for

elucidating ttre behaviour of fluids undergoing shear steady

state HSNEMD is particularly useful providing us with detailed

information at a molecular level regarding some well known

Iaboratory observed phenomena. It is less successful at

determining the zero shear rate viscosity as the degree of

shear thinning increases making extrapolations difficult.

Under favourable conditions, i.e. low density, it is still

more efficient at determining n(0) than either of the

alternative Green-Kubo or perturbation methods.

It has been further shown that the perturbation technique

is of very limited use. It does provide an alternative , if

more expensive, route to the stress response function, which

is a useful internal check, but neither it nor the EMD

Green-Kubo method can economically provide a value for n(O).

The results obtained for the diatomic fluids

qualitatively reaffirm those found previously for other

diatomic systems |6A,7AJ. Shear thinning is found to be

common even for these 'simple' liquids although it remains rifi"

explained satisfactorily by an actual molecular theory. Of

the available theories none can be said to be lwholly
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consistent with the available data. Observations of the

behavj-our of the internal energy and the pressure under shear

confirm the previous findings L9A3 that in 'simple' liquids

the pressure and the energy increase with shear rate

apparently obeying a power law dependence in l though, in the
I

cases studied here, not the ,,YA dependence of Kawasaki-Gunton

theory reported previously. The reorientation of molecules

that occurs under shear has been characterised by several

different functions aII of which give results which are

consistent with a preferred alignment tending to be parallel

to the axis of shear.

These initial efforts to investigate the effects of

molecular anisotropy upon the rheological properties of fluids

have produced some interesting, if not totally conclusive,

results. Originally it was intended that by looking at two

similar molecules of different lengths it could be established

if a larger molecule was more or less viscous than a shorter

one. In real liquids it is impossible to do this important

experiment unambiguously as to study molecules of different

anisotropy inevitably means studying molecules which differ in

other respects also. However, because of the drastic effect

of the increased bond length on the equation of state, and the

known dependence of the viscosity thereupon, it is still not

possible to do the desired experiment completely unambiguously

even for these model liquids. Without any corresponding

states prescrj-ption comparisons were carried out at the same
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temperature and pressures. At a pressure close to atmospheric

the initially unexpected result was obtained that a diatomic

fluid comprising molecules of'1*=1.'0 was Iess viscous than one

comprised of molecules of L*=A.6A8. This drew attentj-on to

the importance of the density in relation to the viscosity.

This was furttrer substantiated by comparing the same two

systems at an elevated pressure which revealed that their

pressure dependences of viscosity were not comparable but,

because of the differing compressibilities, their density

dependences of viscosity were very similar. At. the higher

pressure it was also found that the two systems showed very

similar shear induced changes in the pressure and the internal

energy. This contrasted with the quite different n(r)

behaviour which clearly showed the tendency for the more

anisotropic system to shear thin to a larger extent. It could

be that this difference in the degree of shear thinning could

be correlated in the same way as the zero shear rate viscosity

in that if the dependence of the degree of shear thinning was

known as a function of density then it would be interesting to

compare the respective coefficients for the two systems.

Putting aside the fact that at present there is no universally

accepted way of measuring the degree of shear thinning its

variation with density, at constant temperature, remains

Iargely unknown even for real systems. If such coefficients

could be evaluated and turned out to be very similar for the

molecules studied here it would suggest that the density was

the overriding factor in determining the shear thinning
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behaviour and not the anisotropy. One point to bear in mind

is that at the higher shear rates the viscoEity tends to a

similar limit in each case. This suggests that the viscosity

is to aome extent dependent on the profile that the molecules

present to the Ehear flow aE this wilt, fot the rnolecules used

here, become more similar as the molecules align paralle1 to

the axis of flow.
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CHAPTER 4

ETHANE AND PROPANE RESULTS

4.L Introducti-on

The method used so far, of changing the bond length of a

diatomic molecule, to investigate the effect of anisotropy on

the rheological properties of fluids has limited scope for

development. To broaden comparison with experiment it was

decided to study a series of molecules built up from different

numbers of equivalent interaction sites. rt has previousry

been shown by Ryckaert and Bellemans [123,L24] ttrat ttre

n-alkane fluids butane and decane can be adequatery simurated

by representing OEa and !rn'groups as one equivalent

interaction site of equal mass, the n sites being held

together by rigid C-C bonds and C-C-C bond angles. As

hydrogen atoms were not specifically taken into account their

main effect of hindering internal rotations was modelled by

employing a dihedral angle potential. To prevent overlap

sites separated by three or more intervening ones interacted

through the same LJ L2-6 potential as used for the

intermolecular interactions.

It was thus proposed that a study be made of a series of

molecules resembling n-alkanes constructed in the fashion set

out by Ryckaert and Bellemans [123]. It was not intended at

the outset that any one of these model molecules would
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reproduce accurately any of the properties of its real

counterpart. To do this wourd invorve much parameter fitting

for each molecule which would be costly and setf-defeating in

that it would result in the loss of the basic similarity

between the molecules.

To make some general comparisons with the work already

done on diatomics it was decided the first two, non-sphericar,

rigid members of the series be studied initiarly with a view

to extending the carcurations to morecures.with internar

flexibirity at a later stage. These first two members are the

two centre moder r or rigid diatomic, and three centre moder,

or rigid triatomic, which correspond to 'eLhane, and

'propane'. In the next chapter results wiII be given for a

six centre model incorporating internal degrees of freedom.

4.2 Ethane and Propane Models and Computational Details

To model 'propane' and 'ethane' the interaction

potential, bond lengths, bond angles and masses were those

used previously for n-alkanes II23]. The intermolecular

site-site interaction potential takes the familiar

Lennard-,Jones L2-6 form with cB=AqX and G3.928. The C-C

bond length was in all cases 1.538 and C-C-C bond angle was

fixed at the tetrahedral angle of LAg" 28' in propane. The

mass of a1I sites was set to 14.15134 g/moL.
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As ethane is modelled as a rigid diatomic the same

methods , and hence the same programs, were used as for

chlorine. For propane the addition of an extra site means

that a different algorithm has to be used to integrate the

equations of motion. In this case the method of quaternions

L+a1 \i/as used to integrate the rotationar equations of motion

using an algorithm due to Fincham [114], as described in

section 2.A. A program was then written incorporating this

algorithm to perform equilibrium molecular dynamics on a

system of rigid triatomic molecules. The program was tested

in the usual way on a sample of lOB propane molecules,

initially arranged on a crystal lattice, modelled using the

parameters given. rn arr the simulations reported here on

propane the potential was truncated at half the box rength and

appropriate corrections were added to the virial and the

potential energy. The timestep used was A.4*l0l1aa, in all

cases unless stated otherwise. For ethane a sample of 256

molecures was used throughout and the potential cutoff and

timestep ldere as for the diatomics , namely 2.5O and

0.8*10-ras, respectively.
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4.3 Results aL T*2AAK P-A

To compare the two fluids equilibrium configurations were

generated at a temperature of zAgK close to the zero pressure

isobar. The temperature chosen was fairry arbitrary but as it

was intended to look at a series of molecules it was

neccessary to use a temperature which would ensure that aII

the liquids were in the fruid regime yet not be too row that

the reraxation times of the more comprex fluids became too

much of a probrem. rn the case of propane the desired state

was achieved by interpolating and extrapolating from the

pressure obtained at various densities. For ethane the

constant pressure MD technique LL2AI was used to equilibrate a

sample, initially in a crystal configuration, by setting the

required pressure to zero and allowing the density to rerax to

a constant value. The reduced number.densities resulting from

these procedures were 9l=A.51846 and p*=6 .5Ag52 for ethane and

propane respectively. These densities were used in all

subsequent calculations .

Having obtained equilibrium configurations the

perturbation method was appried to determine the response of

each system to a shear flow. The procedure was the same as

that used on chlorine. Equiribrium trajectories were first

obtained for a period of A.8ps then the same initial

configuration was mechanically perturbed using a delta

function in shear rate with the trajectories then being
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followed for the same amount of time. The initial

configurations were thermalised at the start of each new

segment by rescaling the momenta. In each case a total of ten

segments were averaged together. The results for the

equilibrium properties are given in table 4.L.

Table 4.1 The

propane determined
.:

T *2AAK.

P*

Ethane A.5LA46

equilibrium properties of ethane

from the averages of ten runs of

U/J,nor-l -0lu nol-r t/x

-5444+Bg -9t7A+2A 198.9+3.1

and

0.Bps at

P /bar

-34+44

Propane g.5gA52 -L434A+9A -L93AA+5A 199.A+2.4 L2A+59

From the table it can be seen that the addition of an

extra interaction site effects the potential energy markedry.

As the number of interactions per molecular pair is equal to

t2 , where tr, is the number of sites per molecule, then

empirically it would be expected that the ratio of the

potential energies would be of order 924 or 2.252L,. This

neglects the excruded vorume effect from adding on the extra

site, and the resultant structural changes, and any

differences in number density. The actual ratio is u2.1:1

which is remarkably close. The explanation for this is that

with a bond length of I.538 and d=3.g28,, effectively L!=A.39,

there is a large amount of overlap in these molecules between

neighbouring sites so the increase in excluded volume going

from ethane to propane is smaIl, compared to the case of the

L49



different bond length chlorine molecules. This effect must

also account for the small differences in the zero pressure

densities.

In figs.4.L+4.5 the equilibrium radial distribution

functions are shown. In the case of ethane the COM G(R) and

the site-site g(r) are given. For propane the site-site g(r)

has been resolved into three components gArt, 8gU and Tfg where

A denotes an end site and B denotes a 
""rrtr"l "it". 

rn ethane

the short bond length, 9.39c, resurts in a broad first peak in

9(r) extending from r-L.a6, the nearest rieighbour separation,

to L.46 which covers the range of possibre values for r of the

second atom of a molecure whose first atom is in the nearest

neighbour shell. In chlorine this first peak was split

indicating preferred orientations of molecules at close

quarters. In ethane the shorter bond length and also the

different conditions appear to result in no preferred

alignment. This is also indicated by the G(n) which peaks at

-L.2o the mid-point of the range L.A6 to 1.4d which

corresponds to the minimum and maximum separation of the

centres of mass of two molecules which have site-site

interaction distances of 1o.

In propane the overall site-site g(r) is very similar to

that of ethane with peaks at r=1.2O and r-,2.3O of heights -L.4

and ,1.1 respectively. The resolution of g(r) into three

components reveals that contributions to the first peak are
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not the same from the

end-end interactions,

interactions, type AB,

type BB, per molecular

various interactions. As there are four

type AA, and four end-centre

and only one centre-centre interaction,

pair

s(r) r (4C*(r) + gBE(r) + 4gAB(r))/9 . (4.3.11

As can be seen from figs.4.3 and 4.4 gAA' and 8*,differ in the

region of the first peak, 6^^(r) has a maximum at r,I-.Lo

whereas SO(r)' peaks at 1.36. This is a reasonable result

because the large amount of overlap of the sites in a morecure

means that the central site is 'shielded' from the sites of

other morecules by the end atoms wtrich are conversery more

exposed. This is also shown by Srr(r) which is qualitatively

similar to Srr(r) but has higher p""f" .rra lower troughs

indicating more order in the structure of central sites.

During the course of these equilibrium runs the mean

squared dispracements of the centres of mass were carculated

and from these the diffusion coefficients were estimated to be

(9.711 .a)r'10-9uis-t,- and G.e+a.4) *10--3a2s-1. for ethane and

propane respectively. CIearIy the indication from this result

is that, as the viscosity is generally considered to be

inversely proportional to the diffusion coefficient, the added

interaction centre willr os expected, increase the viscosity.

From the perturbation experiments the stress responses
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were obtained and the off-diagonal components are shown , in

their integrated form, in figs.4.6 and 4.7 for ethane and

propane respectively. The significant components,' M*"(t'),

were fitted to the form

, where Af, was the perturbation in shear rate and was equal to

lt{, in both cases. The constants from these best f its, n ,

: and 9=q? , are given in table 4.2.

Table 4.2 The best fit parameters for bxz$)/bl, fitted
to the form given in eqn.4.3.2 for the r""rral *i*.U from

1O perturbation runs of length O.8ps on ettrane and propane

rr*zggK.

n/mpa s J/ps _gglcra

ethane A.Ag g.LL 9.74

propane 9.38 9.22 L.7L

As before the noise that begins to affect the response ,

at *A.4ps and beyond, makes the estimation of the viscosity

from the curves themselves subject to large errors. The

viscosities are accordingly quoted as g.A7+O.A2mpa s and

9,32+g.O6mPa s for ethane and propane respectively. These

viscosities differ from those quoted in table 4.2. for which

the vis.cosities and relaxation times have been treated as

adjustable parameters to optimise the fit to a single
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exponential. In fact these cannot be varied independently as

their ratio, n/i=G.,, is fixed by the initial slope. As can

be seen from figs.4.8 and 4.9 the single exponential is not a

particular good fit to either response. It is significant,

however, that the viscosity is substantially higherr Gp- is

larger and the relaxation time, T. is longer for prop.rr" than

for ethane.

In the case of

equilibrium runs was

c" ( t) =(o*(0)ocxFG) >

off-diagonal components. The correlation function and its

integrand are shown in a normalised form in fj.g.A.L0. The

infinite frequency shear modulus, Gr.-, evaluated from the mean

squared stress, l Qr = V<%(0)>/kT r, was I.74GPa which compares

well with that calculated from the perturbation result. In

theory the curves shown in figs.A.l and, 4.LA, the integrated

correlation function and the integrated response to a delta

function, shourd be equivarent. The vi.scosity estimated from

the integrand of the correlation function,

propane the stress evaluated from the

used to obtain the correlation function,

, averages being taken over all three

a(? = cs(t') dtt ,

tvI
KTJ

o

in the same time range as that estimated from the perturbation

result, is A.Ls+A.O3mPa s. This does not compare weII with

the previous result of h=9.32+A.O6mPa s but in view of the

known number dependence L777 of the viscosity evaluated from
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the correlation function approach this disparity is not

unexpected.

As for the diatomics the response of the collective

orientation tensor, D, to a perturbation in shear rate was

also followed.

As ethane is moderred as a diatomic the response of the

off-diagonal components, shown in their integrated form in

fig.4.11, are qualitativery and quantitativery very simirar to

those found for the chlorine systems at T'}26AK. p-|A.

unlike ethane propane has three distinct axes of symmetry

which are termed !o,, tp and hi.3"u are illustrLted in

fig.4.L2. These axes ensure that the moment of inertia tensor

is diagonal and are used in the quaternion algorithm to

specify the position of the constituent atoms relative to the

COM, as in these body fixed axes the coordinates of the atoms

remain the same. It is thus possible to specify three

different collective orientation tensors of the form

N

(4.3.31

i=1

and in turn observe their response, ao_ftt), to a perturbation.

It must be noted that these three tensors are not independent

as at all times the following expression must be true

l-54



Flgure 4. ll aDcF(t) vs. t, ethane.
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Figure. 4. 13 aDdF(t) vs. t, for the three PrinclPal
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l**qt*{L-I=o
1' (4.3.4)

The off-diagonal components of the a!o(t) are shown in

fig.4 . I3 .

For the aOfu<tl it i5 not clear whether there is any

response at aff. ao|rttl. changes stightty initiatty but it is

like1y that the changes occuring beyond *LAALI are due to

noise. For the second axis, !n, ao]rttl' shows a simirar

change as the long axis of a diatomic. This is understandable

as_?, is effectively the long axis of the molecule. In

contrast *1r$) shows a negative change indicating alignment

in the -ve quadrant of the plane of shear. Clearly if one of

the principal axes is realigning in the shear plane then it

follows that at least one of the other axes must also be

changing. What is interesting is that it is mainly 2n which

is realigning which indicates that the preferred oriEntation

of the plane of the molecule is perpendicular to the plane of

shear. of the two axes, 8p and h, !f; is the 'longer' so it

might be expected that it would align in the XZ ptane to

minimise the profile the molecule presents to the direction of

shear flow. These results suggest this is not the case.

As for the diatomics steady state homogeneous shear

simulations were performed at a number of shear rates and the

main results are given in tables 4.3, 4.4 and 4.5.
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Table 4.3 The

steady state shear

systems at T-2AAR.

Ethane

f/wtoa-r u/.l,lofr -el t

mean thermodynamic properties obtained from

calculations on the ethane and propane

a

-tnol' T/K P /bar

L2.5

25.4

5A.A

LAA.A

-497A+LA

-497A+Lg

-4889+24

-4724+LA

-9L34+Lg

-9L3A+LS

-9969+LA

-89L4+LA

2ga.Lla.L

2ga.Ly.L

24L.2!q.3

29L.7!A.L

6+8

13+7

64!6

2L4+4

Length
of run
/ps

72

88

48

24

Length
of run
/ps

L28

136

4A

56

64

Propane

*/Laloa-r u/J'nor-l '_e/grrl-t r/K P /bar

LA.A

L5.A

25.4

5A.g

LAg.A

-L4274+29

-L4244+24

-L4L4g+LA

-t3894+39

-L32AA+54

-L9269+29

-L9239+20

-L9LAg+Lg

-L893A!34

-L83AA+44

2AA.ItO.1

24s.2!A .L

294.4!4.2

242 .4!A . L

294.5+A.L

L5g+27

184+18

29L+7

5r3136

LA6L+43
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Table 4.4 The mean shear

dependent viscosity and mean

the steady state calculations

Ethane

?lralos-l a*r/bar n(f)./mPa s

L2.5

25.4

5g.g

LAg.A

Propane

flk$Loa'L

LA.A

L5.A

25.4

sa.a

LAA.A

zoslsz

373!2s

57A+LA

979+29

1593+38

9.269+A.A33

4.249+A.AL7

4.228+A.AA4

4.L96+A.AA6

4.L59+A.AA4

stress, resultant shear rate

normal pressure components from

on ethane and propane aL T..26AK.

9519

L94+4

366+9

646+5

a.976+g.ga7

a.978+a.aa2

4.973+g.aa2

a.a65+a.gal

P /bar
,(t(

' 3+19

11+11

es!L2

26L+7

L46+36

L72+34

343+39

636!26

LA33+43

P;/bar

- 8111

2+LA

19+13

114+8

i /bar
--IDT

L46+45

169!3r

227+L9

286+64

8A8+59

P /bar
zz'

6lLA

28+L2

78+13

27L+LA

,P /bar'zz'
,Se*rn

2L2+36

341115

616+57

L342+69

o;r/bar n(f)/mpa s to/bar

L57



Table 4.5 The mean significant components of the

alignment tensor obtained from the steady state shear

calculations on ethane and propane at T-2ggK.

Ethane

f /Lotoal D*,

L2.5 g.AL2+A,AA3

25.4 A.A24+g.AA2

5A.A O.A43+g.AAL

LAA.g A.A68+A.AAL

Propane

X- axi.s

f/lolos-1 D
x2
,

LA.A -A.AL3+A.AA6

L5.A -A.AL7+A.Ag4

25.A -9.A24+A.AA5

5g.a -a.925+a.aa4

LAA.A -9.A26+g.AA5

Y-axis
a

_ylol:'-q]- ,*1

LA.A 9.A56+g.AA7

L5.A A.A7L+A.gA6

25.4 A.LA,+A.Ag5

5A.A A.L4A+A.AA7

LAA.A A.L,A+A.Ag6

D -L/3xx

a.aa2+a.aa3

a.aa2+a.aa3

a.aal+a.aa3

a.al-a+a.aaL

D -L/3
]ry

-a.aa3+a.ag4

-a.aaa+a.aa4

-a.aa6+a.aa3

-a.glz+a.aa2

Dz;'l' / 3

a.aal+a.aa2

-a.aaL+a.aa3

-a.aaL+a.aa4

-a.aa6+a.aa2

D -L/3xx
--

-a.ga2+a.ao+

-a.ga4+g.aa4

-a.al6+a.aa7

-4.428+a.aas

-4.448+a.aa3

D -L/3xx

a.aa4+a.aa6

a.aLa+a.ag7

a.a3a+a.ala

4.946+a.aag

4.478+a.aa7

.\m-'z'
a.aa3+a.aas

a.aag+a.oas

a.aLs+a.aa6

a.g3l+g.aas

a.a4a+a.aa4

!ze.-'t'
-A.AAL+A.AA5

-a.aa4+a.aas

a.aaL+a.aa3

-g.aa2+a.ags

a.aga+a.aa3

lry-'z'
-a.ag++g.gLL

-a.aLL+a.aa9

-a.at4+a.agg

-a.gl4+a.ag6

-4.433+a.aag

!zz-'t'
-A.AAL+A.AAB

a.aaa+a.gag

-a.al6+a.ga+

-4.432+a.ga6

-4.445+a.aa7
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Z.axis

Y/LoLo{L o\Z' u**-rla nn-t/l Drr-L/3

LA.A -A.A43+A.gg5 -A.AA2+A.AA5 A.AAA9.AAT A.AAZya.AA6

L5.A -9.A54+A.Ag5 -A.Ag6+A.AA5 A.AA2+g.AA6 A.AA4+g.AA6

25.A -A.AgL+g.AA6 -A.ALA+A.AA4 -A.AAL+g.AA5 A.AL6+A.AA5

5A.A -A.LL'+A.AA4 -A.A17+A.AA7 -A.AL7+A.AA7 A.A34+A.gA5

LAA.A -A.L24+A.AA4 -A.A29+A.AA6 -A.AL,+A.AA6 A.A44+A.AA6

4.4 The Shear Rate Dependence of the Viscosity

The shear rate dependent viscosities, plotted in

figs.4.L4 as a function of i' , obtained are of the same

order as those estimated from the perturbation technique.

This indicates that the stress relaxes rapidly in these two

systems at the state points used. rt is also clear that

propane is at reast three times more viscous than ethane and

also shear thj-ns to a larger extent. Indeed ethane onty

noticeabry shows non-linear behaviour at the highest shear

rate, 'L012s-1 . The n(r)*. data has again been fitted to the

three functional forms predicted by the theories of

Ree-Eyring(RE), Hess and Kawasaki-Gunton (xc) as described in

section 3.5. The best fit parameters and root mean square

differences are given in tabre 4.6 and the curves are shown in

figs.4.L5 and 4.16.
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Figure 4.I4 n(r) yr. fk, ethane tEIl and propane (A)'
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Figure 4.16 n(r) vr. Yn, ethane (a). rlt to the

predictions of the
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Table 4.6 The best fit parameters and root mean square

differences (niqsn) for various predicted n(r) dependences for

ethane and propane aL T;-264K.

Ethane Propane

Hess

KG

RE

n(o ) /mPa

rhi/ps

k

RMSD/mPa

n(O ) /mPa

a/ro&pa

RMSD/mPa s

n( o ) /mPa

tr/es

RMSD/mPa

s
I

au

9.477

4.693

a.6aa

a.aal

a.o85

4.L92

a.gaz

4.477

1.115

a.aal

4.267

2 .3A7

4.442

a.aas

A.3LL

L .562

a.gg5

4.26A

3.24L

a.aa9

For ethane the lack of shear thinning means that all the

forms give reasonabre fits and the zero shear rate viscosity

can be quoted, with some confidence, as rR(Ol=A.ABL|P.A0Lmpa s

compared to the rather uncertain value of n(Ol=A.A7fl.A2mpa s

obtained from the perturbation experiments. propane shows

significant shear thinning and consequentially a notable

difference in the estimates for n(O). The RE and Hess curves

give R,(0)'s in the range A.26+A.2'7mPa s1 the KG fit gives a
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higher n(O) of -O.3ImPa s. These also compare well with the

estimation from the perturbation mettrod of n(A)=A.32!g.A6mPa s

although an n(O) of A.26mPa s would imply that there is no

long time relaxation in the stress response function as it

means that the plateau value, e!:{*) = n(0}Af,p in the

perturbation experiment should be nA.A325Pa which corresponds

to the apparent plateau reached by e;;(t) in 'A.2ps, see

fi9.4.7. As for chlorine none of the functional forms does

outstandingly well at predicting the shape of the n(2)"".1i.-

curve in that there appears to be a systematic, rather than

random, deviation of the data points from arr the curves. rn

terms of the root mean square differences the KG and Hess fits

are statistically better than the RE fit.

The apparent underestimation of the viscosity by the RE

and Hess functions is probably a resurt of the range of shear

rates used. Further data at lower shear rates wourd probabry

bring all three estimates for n(O) closer but as lowering the

shear rate inevitabry causes more uncertainty in the resurts

for .n(2) it was not considered profitable to obtain this

information.
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4.5 Shear Induced Alignment

As ethane is modelled as a diatomic it is not surprising

that qualitatively the behaviour of the orientation tensor

under shear is the same as for chlorine. The magnitude is

somewhat less reflecting the effect of the shorter bond length

and the lower density. The values of the shear orientation

parameter, xd(r) = Dyr(l)/f,., are given together with those for

propane in table 4.7.

Tab1e 4.7 The shear orientation parameters determined

from the steady state shear calcurations on ethane and propane

at T-2AAK.

Ethane

t/to*o;r xi(f) /ns

L2.5

25.9

sa.a

raa.g

Propane

vlI,el%r

ta.a

L5.A

25.A

5A.A

LAA.A

-a.L3L+4.456

-a.LL5!9.A23

-4.496+a.a2a

-a.asl+a.aa9

-4.a26+a.ags

4.558+A.A73

4.474!JZ.A3e

a.4L8+A.ALg

4.284+A.AL3

o.L'A+A.AA6

-4.427+4.947

-4.358+A.A3L

-4.323+4.424

-4.234+A.AA8

-4.L24+g.AA4

9.495+a.922

9.494+a.ag7

4.486+a.aa2

4.468+a.aaL

X-axis

xu(i) /ns

Y-axis

'xo(*) /ns

Z-axis

I i.ti) /n"
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lti(r2,, is plotted in fLg. .Ll as a function of .a
/ and a

linear extrapolation Lo ?-A gives a value for Xd@) of

-O.11ps. Multiplying XdL@) by ttre magnitude

( tZSs-l ) used in the perturbation experiments gives as an

estimate for the plateau value of 
_r"r(a|, 

i.e. !*U(o) , of

na.L3B*!01 which compares well with the high"rt ,r.r,r!

obtained by Dxz(t) of ,,A.L2*IO_ 1(,_ which indicates that the for

ethane the orientation relaxes within the duration of the

perturbation experiment.

For propane the results, from the perturbation runs are

confirmed by the steady state values of the arignment tensors.

The !n axis is found to behave in the same \^/ay as the long

axis of a diatomic in that upon shearinS ,Il], and ,L increase

in magnitude whereas D]-, and D:- decrease 
"t 

o*irrg 
" 

t"rro"rr"yry -zzfor alignment to occur in the positive quadrant of the XZ

plane. Through the interdependence of the three tensors,

eqn.4.3.4, counterbalancing changes must occur in the other

orientation tensors. The perturbation resurts suggested that

the majority of the change would occur for the L axis and

this is indeed what the steady state results show as DZ__
xz

decreases more than, by up to five times at the higheJ shear

rate, ,lr. correspondingly ,L decreases ana'o?r, increases

emphasising the tendency for the gi axis to align in the

negative XZ quadrant. Furth"r*or; O!-- shows, Ert the higher
lty

shear rates, a slight negative trend whichr ds for the

diatomics and the tp axis, accompahies the realignment of the

he shear rateoft
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axis in the plane of shear.

The general picture that emerges for liquid propane is

that ttre molecules tend to align with the plane of the

morecure perpendicurar to the plane of shear. This simpre

picture is complicated by the fact that O|- aoes change, which
xz

wourd not occur if the proposed alignment were exactly true.

why the morecures should atign in this way rather than with

the prane of shear is not c1ear. one possibre explanation is

that it is a consequence of the morecures forming into rayers

in the XY plane to assist easier frow. This is thought to

happen in monat.omic fluids lL,2l but is difficult to quantify

as it is a collective dynamic property.

The shear orientation parameters for each of the tensors

are given in tabte 4.7. and are shown in fLg.4.r8 plotted as
!

a function of * . Estimates of the xdJJ) were made using a

linear fit to the lowest four shear rates and the forlowing

results were obtained -A.2ps, A.75ps and -O.56ps for !n, !n

and b respectivery. unlike ethane these estimates of 'xJ(o)

give values for the long time 1imir of AD;U(t), in the

perturbation experiments, of at reast three times in excess of

the highest value of aD;Jt) attained within the time span of

the experiment. This is an interesting result as estimates of

the zero shear rate viscosity tended to suggest that the shear

stress relaxation was complete within this same time interval.

Now as the response of the colrective orientation to a change
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in the shear rate is a measure of the rate at which the

configuration comes to equilibrium after such a perturbation

it follows that the stressr ES it is largely a function of the

configuration, must also take at least the same amount of time

to come to equilibrium. What this result implies is that the

long time relaxation of the stress contributes very little to

the eventual resultant viscosity.

4. 6 Non-equilibrium thermodynamics

From table 4.3. it is clear that both the energy and the

pressure are again functions of the shear rate. To correlate

this behaviour the same procedure has been adopted as for the

diatomics. In table 4. B. the functions AP(r) and AU(r) r !rs

defined in sec.3.B, are given and in figs.4.Ig and, 4.2A

togroAP(f) and logt6Afil(f)' are plotted against logro/," At the

lower shear rates the data suffers through the imprecision in

the results and the small differences between the pressure and

the energy in the sheared and unsheared states. At the higher

shear rates the difference increases so the uncertainty in the

results becomes less. For this reason only the highest three

shear rates have been considered in fitting the data to the

forms given in eqns.3.8.3 and 3.8.4. From figs.4.L9 and, 4.2A

it. can be seen that for these higher shear rates the data

gives a good fit to the linear forms of these equations. The
<

resultant best fit slopes (a and b) and constants (Pr and U1;)

are given in table 4.9.
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Table 4.8 The functions aP(i)r and AU(r) obtained from the

steady state shear calculations on ethane and propane at

T-2AAK.

Ethane

,,fiotoit :..ogro(Y/tolos-t ) lP(/)/bar aJ{t(Y)lt notr-l

L2.5

25.4

5g.a

Lgg.a

Propane

*/\otos-r

LA.A

L5.g

25.4

5A.A

Lga.a

L.A

L.L76

1.398

1.699

2.4

3I+55

65+51

171+48

393+59

942+64

72+9A

ra6+89

196+88

454+9L

LL4A+LAA

Table 4.9 The best fit parameters to the forms given in

L.497

1.398

L .699

2.Q)

33+36

39+36

8e136

249+35

9i / jmor b

2.84 L.A3

3.48 L.29

66+82

74+A2

163+83

32L+82

N(r) /'J nol-llo6ro(//II)to"-) aF(*)lbar

eqns.3.8.3 and 3.8.4 for the data obtained for ap(f)' and

from the steady state calculations on ethane and propane

T -2AAK.

6u(fr

at

' .a p[/bar a

Ethane 4.49 I.35

Propane 3.34 L.23

In comparison to

the shear rate of the

the chlorine

pressure and

results the dependence

the energy is found to

on

be
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" tiyt''',, which is closer to the predicted dependence of
3

*2' l9A), except in the case of the energy in the ethane

system. For ethane the energy is found to vary approximately

." j which is similar to ttrat found in chlorine but

anomalous in the context of the other three dependences shown

in figs.4.Lg and, 4.2A. There is a greater difference between

the chlorine and the alkane systems for the constants ,Uft ana

Fri, of at least an order of magnitude. This is understandable

given the large difference in the conditions and the models

used. There is also a significant difference between ethane

and propane in the magnitude of AP(r) and AU(r) with propane

showing the larger change in both cases. It is not obvious

why this should be the case since in chapter 3 it was shown

that two diatomics with the same interaction site potential

and at the same state point but with differing anisotropies

showed very similar changes in the pressure and energy under

shearing. Here we have two molecules made up of two and three

identical sites at roughly the same state point which show a

noticeable difference in the magnitude of the effects. It has

already been noted that these two molecules differ in their

equilibrium potential energies by a factor of -2 which is

largely a result of the extra interactions involved in a three

site as compared to a two site molecule. This means that the

average potential between two molecules has a deeper well in

the case of propane and thus any similar change in the

structure of the fluid caused by the shear flow will cause a

larger change in the potential energy and also in its first
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derivative, which at constant temperature effectively

determines the change in pressure, than in ethane.

A further resolution of the shear induced pressure

changes is given by the three normal pressure components.

Their change relative to P(r) are given by the functions

AP-(r), r !ls defined in eqn.3.8.5, and are shown for ethane and

propane in table 4.LA.

Table 4.1O The functions APad(f.)" as determined from the

ethane and propane at T-2AAK.steady state calculations on

Ethane

gTlglos-l /aar :rtl1,/aar
a+L3

I5+14

15+14

56+II

6F**(f)/bar

L2.5

25.A

5A.A

LAA.A

Propane

*/L@oe:t

Lg.g

L5.A

25.4

sa.a

LAA.g

-3+24

-2+L3

32+I8

47+8

-3145

-12+38

L3+44

L24+44

-28+55

LPw(r,

2+L4

-11+12

-45+18

-Lga+9

w
-4+52

-1 5+36

-63+24

-227+79

-253+53

/aar 4\19/r",
8r43

27+4A

51+17

LA3+68

281+56

There is a clear trend

gi to decrease relative

and propane for

shear rate is

Ln

to

both ethane

P(flt as the
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increased and for Pr;(!),;- Lo increase relative to P(r) .

APxx(r),) shows t"=" 
""rt.in 

behaviour. In ethane it appears to

increase like ,4i:*(t) whereas in propane Ap...-.(r) is small at
-_xx'

the lower three shear rates, becomes significantly positive at

f = 5*101o"-t b,.,t then decreases at the highest shear rate,

, !-:-tEl. rhis seneral behaviour of ii{"2"Pq2 and

Pyy(r)<P(r)._ " differs from that found for the diatomics where

!2.q| and 
!*!YyI It is not possible to make any

firm concrusions as to why this might be so because of the

Iarge disparity in the state points used but as ethane itself

is modelled as a pseudo-diatomic it i-s unrikery that the

difference in the behaviour of the normal pressures is due to

the way in which the morecules are moderred. rt is likery

that simulations performed on ethane and propane at conditions

comparable to those used in the chlorine system would produce

similar trends for the normal pressures.

4.7 Shear Induced Structural Changes

The changes in fluid structure which give rise to the

increased energy and pressure have been monitored by

calcurating radial distribution functions. For ethane the

onry noticeabre differences between the r.d.fs at equilibrium

and at a shear rate of IOl?s-!, are a slight movement of the

first peak of the site-site g(r) to a lower r value and an

increase in the height of the COM-COM G(R) from *L.9 to .2.L.
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These findings are consistent with an increase in energy and

pressurer os the sites penetrate further into the repursive

part of the potential , and with the alignment that occurs

under shear producing more structure in the COM G(R).

For propane the g(r)s from simulations at the highest

shear rate, 10r2.-tt'', have been superimposed over the

equilibrium g(r)s in fLg.4.2L+4.24. The targest change

occurs in eg(r) but as this only contributes L/g to g(r) its

effect upon g(r) is small. The general trend for g(r) and its

resolved parts , rg^ (r)", 'd*(r) -and .frr(r) , is the same with

the first peak becoming larger, the first trough becoming

shallower and a conseguent decrease in the height of the

second peak. As arready noted the one extra site in the

propane moder makes interpretation of the r.d.fs difficult.

The behaviour of the overall g(r) is similar to the cases of

ethane and the diatomics but as the coM G(R) has not been

carcurated the ordering of the morecules cannot be discerned

in the same way as before. euatitativery it might be expected

that 
brll 

resembles G(R) as the separation of rhe central

site and the coM is onry a.Llg. Assuming this is so propane

shows simirar behaviour as the diatomics with the greater

changes being more apparent for the COM structure.
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4.8 Conclusions

CIearIy the addition of an extra site to the diatomic

model produces quite drastic changes in virtually aII the

properties measured. This can be rationalised as being caused

by an effective halving of the reduced temperature on going

from ethane to propane as the interaction potential energy

more than doubles. So to evaluate the effect of the change in

the geometry between a diatomic and a triatomic it would

probably be better to compare propane at 2AAK with ethane

'laaK. This again raises the probrem of corresponding states

if one is trying to answer questions about the relative

rheological properties of molecules of different 'shape'.

However, in a crude, but probably more realistic, r^ray

morecures can be said to vary not because of their different

shapes so much but because the numbers and/or intensities of

their constituent 'sites' are different. The comparison

between rethane' and 'propane' is a particularly dramatic

example of this.
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CHAPTER 5

HEXANE AND FLEXANE : EQUILIBRIUM RESULTS AT zAgK

5.1 Introduction

Up to now the simulations reported here have been timited

to entirely rigid molecules. Although interesting results

have been obtained it has proved difficult to perform the

totally unambiguous experiments desired because of the problem

of finding corresponding states. Even though systems have

been looked at with differing bond lengths and numbers of

interactioh centres it has not been possible to prove that,

for instance, larger molecules are inherently more viscous,

sdlr than smaller ones because of the arbitrariness in

choosing the conditions at which to make the comparisons.

studying molecures which possess internal degrees of freedom

has the advantages of allowing much closer comparisons between

molecules to be carried out, as the changes induced in the

state functions by altering the barriers to internal rotations

are likely to be smal1, and it also means that a property of

particular relevance, i.e. flexibility, is being probed as it

exists in all real liquid lubrj-cant molecules.

It was, thusr proposed that two similar model molecules

be studied, using molecular dynamics, differing only in their

'frexibility'. rn this way it was hoped that an unbiased view

of the effect of hindered internal rotation upon the

rheological properties of a fluid might be obtained which
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although not directly relatable to any one particular molecule

might give some insight into the comparative behaviour of

different molecules. The six centre n-alkane model was chosen

as a compromise, being a molecule of sufficient complexity for

which it would be possible to simulate a representative sample

for long enough times within the limitations of computer

resources.

5.2 Details of the Mode1s

MODEL I : HEXANE

As described in sec.4.2 the model of a n-alkane

originally used by Ryckaert and Bellemans LtZgl has been

adopted. N-hexane is modelled as six centres of equal mass

(r+.sr:4 grol-l ) which represent trre ic'ff2 and CHs groups.

carbon-carbon bond rengths are rigidry fixed at r.538 and ccc

bond angles at LAgo 28' . Each centre is the sit.e of a

Lennard-Jones L2-6 potential with parameters g = 3.924 and

e/k= 84K which determines intermolecular interactions between

sites of different molecules and intramolecular interacti-ons

between sites separated by ttrree or more centres within a

molecu1e. Furthermore, a dihedral angle potential , !0(q),

defined as
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Figure 5.1 The dihedral angle potential
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to(c)/h - (f.116 + 1.462cosa - 1.5?8cos2q.-3'0.368cos?(

;;, B. ?88coss(x)/103[

1,3.,l56costo {,

(5.2. r)

is used to restrict the rotation around all three dihedral

angles per. mo1ecu1e. gg) is illustrated in fig.5.I and the

method used to evaluate the forces on the sitest due to 
'd{*ii' 

i"

given in Appendix 2.

MODEL 2 : FLEXANE

Is as model I in all respects except that forces arising

from the dihedral angle potential, O(a), are set to zero.

This is equivalent to setting,O(c) = O but it was found useful

to accumulate o(c) as in eqn.5.2.L to provide information on

the changes in distribution of dihedral angres. As this is a

more flexible form of hexane it is called FLEXANE for

convenience.

5.3 Details of the Simulations

All simulations were performed with N=1O8 molecules in a

cubic celr at temperatures of 2aaK and 3gaK. The equations of

motion were solved using the 'leapfrog' form of the Verlet

algorithm in conjunction with the rconstraints' scheme as

described in sec.2.9. The time step used was of 1ength

0.4*10-1aa and the constraints of fixed bond rengths and bond

angles were maintained to a tolerance of 1.'re=9 for most of the
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simulations. The number of iterations required to satisfy

these constraints per molecule per time step was -18 for

hexane and *L2 for flexane at 2ggK. For each time step a

vectorised version of the program required -A.6s of CpU time

on a Cray-I machine whereas the scalar program required -1.6s

of CPU time on a CDC-76AA. The latter used a method of

nearest neighbour tables to reduce the amount of time needed

to evaluate the forces (see Appendix 3).

It was subsequently found that the modifications to the

constraints procedure outlined in sec.2.LA meant that the

tolerance could be reduced to 10-6r without seriously affecting

the amount of CPU time required per time step. The number of

iterations required per molecule per time step to satisfy the

higher tolerance inereased to -33 for hexane and 27 for

flexane at the same temperature as before. Although the

number of iterations has roughly doubled there is no

significant increase in the CPU time consumed because the

modified procedure requires no SQRT functions to be evaluated.

It was intended that in at1 calculations the L-J L2-6

potentiar be truncated at !e=2.56 and rong range corrections

were added to the energy and the virial assuming this and that

the site-site g(r)=t for',Ifrqi However, having completed a1I

the simulations it was subsequently discovered that in

employing a cut-off the square of the separation of two

interacting sites had been compared erroneously with rc
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instead of ,'f.il. As distances were measured in box units, i.e.

all coordinates lie between -1 and *1, the difference between

-2;r. and rl in these units was small but effectively meant that

the cut-off used was in fact 2.924o. This meant that the

pressure and energy as calculated were in error by a small but

constant amount which has had to be corrected for. This is

not a serious problem as the conditions chosen at which to

compare the two models were largely arbitrary but as the

results for the smaller alkanes were obtained at the state

point (T-2AAK, P-A) this point was initiatty chosen for these

calculations. Therefore, in the process of equilibrating a

sample of flexane at the desired temperature the volume was

adjusted to give an apparent pressure of *A. With the

discovery of the error in the cut-off the actual pressure is

somewhat away from zero.

The method of preparation of equilibrated configurations

of hexane and frexane was to aI1ow an initially cubic lattice

of aII Trans , i.e_A=A, conformers of flexane to equilibrate

at 2AAK for -50ps. In the absence of a dihedral angle

potential rotations around the dihedral angle were rapid and

the sample quickly established an equilibrium state.To produce

a sample of hexane the dihedral potential was then gradually

introduced and the system then allowed a further TAps to

relax.As can be seen from fig.5.r the barriers to transitions

are high compared to kT (T=2TAK) indeed no AirC. i transitions

were observed and the frequency of G-T transitions was only af
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per ps for lOB molecules, which implies a mean time between

transitions for one dihedrar angre in excess of Laaps. This

means we cannot be certain then that the distribution of

conformers in hexane has completery reached equilibrium.

5.4 Results at ZAAK

Having obtained configurati-ons for hexane and flexane

further simulatj-ons were performed at equilibrium and at shear

rates in the range 1010-+2*1011"-1 , the resurts of the ratter

wirr be given in the next chapter. rn alr these simurations

the reduced number density, 4, was fixed at a.33749. As the

HSNEMD calculations are carried out isothermally the

equilibrium simulations were performed using the same

procedure for maintaining constant temperature (see sec.2.L5)

so as to obtain the best comparisons between the resurts at

equiribrium and under shear. To check the stability of the

numerical integration scheme and to aIlow comparisons with the

constant temperature simulations results were also obtained at

constant energy.

In table 5.1 a comparison is given between the

thermodynamic data obtained for hexane and flexane from

simurations at both constant temperature and constant energy.
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Table 5.I The mean thermodynamic functions obtained from

simulations at constant temperature (ttrVrf) and constant

energy (lt, V, U ) for hexane and f lexane at I-2AAK. gi\g .337 49 .

U=total energy, Oftotal f,.f L2-6 potential energlr

'O.=intramolecular contribution to O and O =total dihedral
1C

angle potential energy (* indicates calculated for comparison

only ).

Hexane Flexane

(N,v,T) (t't,v,n) (N,v,r) (N,v,E)

u /!g)'-37 33s+7 a -37 sla+a -4233a+6s -423aa+a

o,/1,""f2-5a27a+4g -sa2ga+6a -4ggLa+6a -4g7sa+Ba

ait/fi,m{2 -LABa+La -L37 a+La -L37 a+La
] 

-to^./'i trrcL.'' 546a+69 s2La+6a r,3a42a+4\a r,3asga+2sa
q'

r /K 2AA .Alg .A 2gA .4+I . 5 2AA .Ay .A 2gA .A+L.6

v/bar 55A+39 579+79 2BA+5A 3AA+4A

Length
of run
/ps 48.a 62.4 s7.6 2L.6

To the number of significant figures quoted in table 5.I

the error in the total energy is zero for the constant energy

simulations. The actual constancy of the energy was monitored

by calculating the root mean squared deviation in U and was

found to be no more than A.AA5Z of the mean total energy for

either hexane or flexane.

As found previously for simpler systems [66] (lu,v,t) and

(N,V,e) MD simulations produce results for the thermodynamic
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properties which are in good agreement. Apart from the

dihedral angle potential energy in hexane, which in turn

affects the total energlr aII other properties agree to within

the estimated errors for both systems. This disparity in the

'b- for hexane is almost certainly a result of ther previously
_9
mentioned, long relaxation times involved in the

conformational changes and the fact that the respective

simulations did not start from the same initial configuration,

consequentially they represent different time periods in the

evolution of the system. Comparisons between hexane and

flexane reveal that energetically the systems are very

similar. The total energies differ by -5AgAJ nol-l, largely *

due to the contribution from O which does not exist in
-((

flexane. The 'O--'s siven in table 5.I for flexane have been
d

calculated for comparison only and they show the large

difference in the internal structure of the molecules. There

is a smaller difference, -45Ab rol-1, in the total LJ L2-6

potential energies of which -LAA! p{' t" accounted for by the

intramolecular contribution, further reflecting the different

internal structure. The remaining small difference implies

that the intermolecular structure is affected by the

introduction of the dihedral angle potential. This is also

borne out by the higher pressure in the hexane system.

To determine the significance of this pressure disparity,

-270bar, a sample of flexane was compressed and equilibrated

at a slightly higher density o1 i62*=A.34Lg7 for a period of
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*66ps. Averages were then taken over a further period of 20ps

at constant temperature. The densification caused an increase

in the pressure Lo 650+40bar and a decrease in the total

energy Lo -4284}+8g|.luo{ti, This was r wholly due to a change

in the intermolecular LJ potential energy as the

intramolecular contribution remained constant, to within the

errors of the calculation, upon densification and the

temperature was the same as before. From the pressure and

volume changes an approximate compressibility has been

determined using the following equation

jj ii
where [=1vr+V2) /2 , 

{av=vi'iir' 
and ,

obtained of (3 . O+A. 6 ) * I$-"tar-r ,

ii aP=Pr-fai, The varue of tF

is in the range found for

further estimated that a

be required to bring the

to that of hexane.

many real liquids [f25]. It was

volume decrease of only -18 would

pressure of the flexane system up

These results show that thermodynamically these two

fluids are very simiar, especially when compared to the

previous cases of the diatomics and the shorter alkanes.

CIearIy the conformations of the molecules are likely to be

radically altered by the introduction of a dihedral angle

potential so it is important to compare the fluids at a more

fundamental leve1 to establish the possible causes of any

differences in their rheological behaviour.
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5.5 Radial Distribution Functions

Fig.5.2 shows the site-site pair distribution functj-on,

g(r), for sites of different molecules. The slight difference

between the two is consistent with the pressure and energy

disparities. Although the potential is truncated the

oscillations around g(r)=t continue out at least to half a box

Iength, 3.42o. The error introduced by calculating the long

range correction to the potential energy with 9(r)=t for r)r.l

\^/as calculated by numerically integrating the relevant

function over g(r). This error was found to be -A.Lt of the

total potential energy which is of the same order as the

inherent error due to fluctuations in the system.

Fig.5.3 shows the radial distribution function for the

centres of mass G(R). The reduction in the amount of

averaging on going from sites to COM results in poorer

statistics but there are significant differences between the

two. Hexane exhibits a split first peak indicating preferred

alignments within the nearest neighbour shell. This has also

been seen in rigid diatomics modelled by a two centre LJ l-2-6

potential t39l where for moderate anisotropies the splitting

is caused by molecules being aligned with their axes either

paralle1 or perpendicular, the paralle1 alignment being that

of minimum COM separation. Flexane shows a broader less

aligned distribution with a noticeable tendency for the COMs
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to be further apart within the range L.A+1.3c, than in hexane.

5.6 Orientational Cross Correlation Function

To further determine the degree of alignment between

molecules as a function of COM separation a cross correlation

function has been calculated, Pr(B), defined as

2(Itoi'trej) s(l!i;l - E)

NN

))
i=1 j)i{1Pr(B) 

=

s(llijl - B)

,wherei Ef is the position of the COM of molecule i. For no

preferred orientation the average varue of lpr(n)i wirl be L/3,

for paralle1 alignment 'iiitn$ > L/3 and tor p"rp"ndicutar

alignment Pe(B) < L/3. rn fig.5.4 *at*f is plorted as a

function of R for hexane and flexane. The function is similar

for both fluids beyond -26 as it quickly decays to ttre

expected large R value of Lf3. In the region between 16 and

2d there are noticeable differences between the two with

hexane becoming aligned at slightly smaller separations than

frexane and to a greater extent. This is consistent with the

previous interpretation of the G(R).

NN

))
1=1 J)i
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5.7 Intramolecular Structure

Figs.5.5, 5.6 and 5.7 give the probability densities for

the separation of sites within a molecule that are separated

by two, three and four others, respectively. AI1 possible

contributions are taken in these distributions so fig.5.5 is

the average 6f rra(=.lrr+1"),,rae and rgev where the indices refer
fto the six sites of a molecule ""drIU 

. lL_ Jd. There is a

marked difference between the distributions for hexane and

flexane caused by the inclusion of the dihedral angle

potential. Hexane shows prominent peaks at points which

correspond to the minima in O(cr) , G- G$=-L2A" ), T 11c; O" ) and

itl (rrr =Lza" ). For sites separated by two others the ef fect of

qQl is most pronounced producing a sharp peak for the Trans

conformer and a broader smaller peak for the Gauche

conformers. For sites separated by three others there are

peaks corresponding to TT and TG conformers but GG states are

not present because they lead to separations less than d and

are therefore less likeIy as ttrese sites interact through the

L,I L2-6 potential. This results in only a few of the

otherwise 27 possible conformers being in evidence for the

end-to-end separation, lr15'. The main conformers being TTT

(!_" =6.3OBE) , rGT ( &e =S. 7934) , &1tc- and GTr ({Ie,=5 .226A for

both).

In flexane the distributions are much broader but not

entirely featurel!ss. There is some indication that aII sites
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align in the same plane, i.e. with {s} = d (Trans) or LB?i

(Cis). For sites separated by three others there are

discernible peaks for the TT and TC conformations. For fre,

this is less pronounced but there is a broad peak between 4.84

and s.AL which corresponds to the TTC and CTC conformers.

The distribution of dihedral angles which give rise to

the various conformers have also been calculated. In the

models used here the two outer dihedral angles, qi! and rcE, are

equivalent and so the distributions obtained from these two

have been averaged together and are shown in fig.5.8 whereas

the distribution for the central angle , )%,, are shown in

fig.5.9. Once again the effect oflOlcio is very marked in the

hexane case producing peaks corresponding to the minima in the

potential.

To further compare the internal structures the

percentages of Gi, T and 1C-, dihedral angles, and hence the

percentage conformers, has been calculated using the following

criteria for assigning a label to a dihedral angler g s-

c- if -Lgd < q, <-6d

T if -6g" < e,, < 6g"

li+ if 6a" < q, <LBa"

The average percentages of dihedral angles and the various

conformers from the equilibrium simurations on hexane and

flexane are given in table 5.2.
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Figure 5.9 The probabiltty
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Tab1e 5.2 The mean percentage of dihedral angles and

conformers from the equilibrium calculations on hexane and

flexane aL l-2AgK.

E of dihedral angles

Hexane Flexane
A^ar,g[ qa I

G_ I3.O+1.5 L2.3+g.g

T 73.2+2.2 74.8+L.9

ci I3.9+I.7 12.8+1.1

t of conformers

Hexane

j{L+%
39.4+L.5 L4.7+L.5

39.1+I.8 7A.6+L.7

34.5!L.4 L4.7+L.2

Flexane

TTT

TTG

TGT

TGG

rc+G_l

GTG

e&.
GGG

Others

32.4+2.5

33.2+L.7

24.2+L.6

9.6+a.4

a.g+a.g

5 .4!9 .7

4.5+A.4

g.A+A . L

a.a+a.a

6.9+4.6

3g.g+L.2

LL.7+L.g

L2.A+A.A

4.9+a.L

L7 .3+L.A

L7 .3+4.9

4 .1+A .4

4.8+a.L

The percentage of dihedral angles and the distribution

functions indicate that there is a balance in the number 
"t q

ana [* states for both hexane and flexane. In flexane this is

to be expected because of the lack of barriers to rotation but

in hexane it is possible that the slow relaxation of the
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internal modes could result in the system being trapped in a

non-equilibrium state on the time scale of these experiments.

The fact that there is near equality in the number of Ci and

,G- angles maybe a fortuitous result of the equilibration

procedure or it could indicate that the system is close to

equilibrium.

Apart from the clear differences in the distribution of

dihedral angles between hexane and flexane there is also a

contrast in the distribution for ther outer angles, qt and rFal

and the central angle , :Li. In hexane the distribution for

both types of angle are very similar but in frexane there is a

striking contrast with a large proportion 4AZ of !,s being

in the T state compared to -4az for the outer angles. without

any dihedral angre potentiar this must be entirery due to the

intramolecular interactions between sites I, 2, 5 and 6 and

the intermorecular interactions. To determine the degree to

which the burk fluid effects the conformations of these

molecules probability densities were generated for a molecule

in isolation. This was achieved by measuring the total

intramorecular !nerglr ointt, for a particurar configuration

generated by rotating the dihedral angles through 36A" in 5"

steps. Permutating over all the combinations of dihedral

angles in this way accounts for the inherent degeneracy of '

states. The probability for a particular configuration, pi-,

was then carculated using 
-l--
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. ]try = exp(-oiirtr/d$)/,, ) "*nr*int3/tr)
J

, where the sum is over all the 373248 configurations sampled.'

The P1,3' were then used to calculate probability densities for

the dihedral angles F(cr,i$[ and p(c{)., and for the end-to-end

separation p(rro)'. These gas phase probability densities are

shown in figs.5.Ig, 5.I1 and 5.L2 together with the

experimental ones determined from the equilibrium simulations.

In flexane the distribution of dihedral angles agrees

quite well with that predicted for a single molecule in

isolation. There is a slight tendency for there to be an

excess in the region of oh=gi 
"116 E-;;, =+LBA" which is

consistent with the excess in p(r# in the region of 5A

indicating that in the bulk fluid the TTC and crc conformers

are preferred to some extent

In hexane there are significantly higher proportions of

gauche angles than predicted from the boltzmann factors. This

has been quantified in terms of the observed and 'theoretical'

percentages of the respective angles in table 5.3.
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Table 5.3. The observed (obs) and expected (exp)

percentages of dihedral angles for hexane and flexane at

A *2AAK.

.ii;, E,

GTGT

Hexane

Flexane

Qualitatively the same effect is seen in the p(.ri6)r with

significantry less arr trans conformers than is predicted and

a correspondingry rarger probability of conformers containing

a gauche angle.

From the flexane case it is clear that the bulk fluid

does exert some slight influence on the internal structure of

molecules. In hexane there is an apparently much greater

effect which is not unfeasible as it is like1y that a fluid of

more rigid molecules will influence the intramolecular

arrangement of a molecule more than a fluid made up of

flexible ones. It could be equally weII argued that a rigid

molecule is more capable of resisting the efforts of the bulk

fruid to alter its structure. This again brings into question

the equilibration procedure and the possibility that the

f-oo" 27 73 25 75

I

_J

F*n 16 84 s es

[-ou" Gl 3e 2s 7L

_t
I

Ln*p s7 43 32 68
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hexane system is to some extent 'frozen' in a non-equilibrium

state.

5.8 Intramolecular Dynamics

To establish whether the system is in equilibrium

requires a knowledge of the rates of transition over the

internal barriers for the competing G--+T and T+G processes.

Parity between these rates would be indicative of equilibrium

but their actual determination in a MD experiment is not

always straightforward because of the ambiguity in defining

what constitutes a 'transition' and ttre possible poor

statistics which will occur when slow transition rates are

combined with the fact that there are relatively few dihedral

angles to be sampled over. As an attempt at determining these

transition rates the changes in the dihedral angles were

followed closely in equilibrium runs for hexane and flexane.

Transitions were deemed to lrave occurred when the angle passed

through any of the three maxima in the potential at a =+6Oo and

e,=l-tili with the direction of crossing determining whether it

is a G+T or a T+G transition in the case of y,=16go. It is

then a simple matter to count up the number of each type in a

certain time span and arrive at an estimate for the frequency

of a transition. The definition of a transition used here is

a simple one and does not take into account the possibility

that an angle may temporarily just cross one of the 'barriers'

only to return to the same potential weII causing two
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transitions to be registered using the accounting scheme

described whereas, in factr rro complete transitions took

place. Other definitions have similar problems and thus the

ambiguity.

In table 5.4 the numbers of the various transitions from

a period of *62ps of an equj-librium simulation of IO8 hexane

molecules is given along with those for the same count

performed over a much shorter time *22ps on a flexane system.

Table 5.4 The number of transitions observed in

equilibrium simulations at T-2AAK on hexane and flexane in a

period of 62ps and 22ps respectively.

el+ca' _!?1

G+T T+G GrG G+T T.rG G+G

Hexane 69 5A A 31 25 A

Flexane 2559 255A 2793 L234 L233 LgA

The flexane data is included for comparison only as their

are no barriers to rotation arising from a dihedral angle

potential but it is interesting to note that for {z G-+G

transitions are much less frequent than the rest. The

probability densities in fig.5.9 reveal that in flexanet.Q

values in the region of +LBA'are particularly unfavourable

because of the intramolecular L,J interactions consequentially

there is a low rate of G--+G transitions. For the other

transitions there are no appreciable barriers and the rates of
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crossing are high with virtual equality in the numbers of G+T

and T-+G movements. Rates of G(-)T transitions are only

slightly less for a2 as the total number counted less than

half the figure for the total for ci and ca:

rn hexane a period of armost thre"e times that sampred for

flexane produces relatively few transitions. As expected

there are no G.+G transitions as this barrier is of order lOkT

at 2gAK. There is an imbalance in the numbers of G-+T and

T.-)c transitions but with such poor statistics it is

impossible to say whether this is systematic or not. As for

flexane there is no indication that the rates of T<.-)G

movements is significantry larger for the end dihedrar angles.

From the total number of transitions (\), the length of the

sampling time (!) and the total number of dihedral angles

1f"l the mean time between transitions ("u) in a dihedral

angle has been estimated from

(5.8. U
IFor hexane b-ll0ps but for flexane \tf0.7ps which gives a

measure of the contrasting timescales for the internal modes

in these two models.

To examine in more detail the dynamics of the internal

degrees of freedom two other types of functions were

calculated. Firstly, the time correration function for the

dihedral angles, tilo{t)'|, defined as
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{1

co(t) = (et(O)qJ(t)> , (5.8;2)

where j=i for the auto-correlation funcLion (acf) and j*i for

the cross correlation functions, and secondly the mean squared

displacement of the dihedral angles

''.ioi = <(crr(t) - qi(o))2> ,. (5.8.3)

The acf's for q are shown for hexane and flexane in

figs.5.13 and 5.I4. Once again the different time scales for

the relaxation are apparent with hexane showing a decrease of

only 2az in correration ln 35ps whereas in frexane the angres

have totarry decorrerated in one tenth of that time. rt i.s

possibre to discern in frexane a different reraxation curve

for {z whereas in hexane the time over which.correlations were

carried out is not long enough to estabrish a similar trend.

Fitting the functions to the form Co(t)=exn?t/rt-' gives

relaxation times of -o.33ps for {,si and *a.54ps fol !tin
frexane and reraxation times in excess of Laaps for hexane.

The dihedral angle cross correlation functions are shown

in fig.5.15 for frexane. The functions t<exr(0)cg(t)> and

"Gz(0)qo(t)>'1 have significant zero time values and show

similar relaxation behaviour as the self correlation functions

but I (ctr(g0cE(t)) I has a much smaller zero time value and is a

particularly noisy function. The existence of correration
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between nearest neighbour angles points to a degree of

cooperative motion even in this highry frexibre mo1ecule. For

hexane the length of correlation times is such that it is

impossible to see this effect in the systems used here without

sampling considerably more of phase space.

The second function, . c2(t), is shown for hexane and

flexane at short times in fig.5.I6 and at long times in

fi9.5.17. At aII times there is a considerable difference in

the magnitude of az(t), between trexane and flexane as would be

expected. The interesting differences rie in the qualitative

behaviour at short times. Flexane shows a smooth transition

from an initial quadratic rise of a2ct) | with time to a linear

rise very similar to that seen in the mean squared

displacement of particles. In hexane 
"'tal 

shows the effect

of the dihedral angle potential particularly weII as the

function is highry oscilratory at short rimes. For 4f *l-.
there are at least nine discernibre oscirlations in a period

of 1.8ps. For ,,di,a(t)' in hexane the behaviour is slightly

different at short times as the oscillations are damped out by

the tendency for angles to undergo transitions which gives

rise to a more linear increase i" __E1q Flexane shows a

factor of two difference irr o'{fl between the end angles, lt
and CE j and the central angle, qz,i even at short times whereas

in hexane only ttre long time values of tz(t) show the

divergence of the functions for the different types of angle.

From the long time slope of az(t) it is possible to define an
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Figure 5. 16 The rean rquared ditplacerent of the
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angular diffusion coefficient rD6i given by

,
h _ r!_ dc-(t)Irqi = atrt i. aT

Furthermore, if one assumes that two transitionsr orr! forward

and one backward, are possible for each L2g degrees that the

angle diffuses through then it is also possible to define

another mean time between transitions,,il, as

rrin = nAlpno 
?

(5.8.5)

The results for

and flexane.

Table 5.5

mean transition

determined from

at T -2AAK.

Hexane

It can be seen

evaluated using

those obtained

_ffr'/ns' Drz /pi'
LAA+LA 7A+LA

rtar/Ps 
?n"

72+8 99+LA

'(5.8.4r

transition times

agreement with

Dc and 7n are given in table 5.5. for trexane

.l
The angular diffusion coefficient, D;t, and the

timer Tm L as defined in egns.5.8.4 and 5.8.5 ,

equilibrium simulations of hexane and flexane

Flexane LAg6A+539 5534+5AA 4.66+4.43 L.A3+A.L2

from table 5.5 that the mean

eqn.5.8.5 are in reasonable

using eqn.5.8.1.

has been established that the two moleculesSo far it
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have very simirar gross thermodynamical properties some smarl

differences in static intermolecular correlations and

completely different internal structure and dynamics. The

torsional modes in these fruids have arready been shown to be

on a time scale comparable to that of intermolecular motions

so it is more than likely that there will be significant

coupling between the two. The possibility is then that there

will be differences in the diffusive motion of the two

molecules, and thus presumably in their viscosity.

5.9 SeIf Diffusion

The diffusive motion of these molecules has been

monitored in the usual way through the velocity

auto-correlation function (VACF) given by

'o"&) = <!1(0).tli(t)>r, , (5. e.1)

and the mean squared displacement

E'(t) = <(&r(t) - Ei(o))1>-'= <( !i(e) ds in"}

where Ei and !i are the position and velocity of the COM of

morecure i. rn addition a number of resorutions have been

performed to try and probe the motions of these molecules more

deeply and these will be discussed in turn.

t

I
o
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In theory it

coefficient from

eqns.

is possible

either Ca(t)

to

or

determine the diffusion

F?(t) from the following

,=*i c+(t) dt (5. e.3)

and

,(0:9.41

In practice it is simpler and more efficient to calculate

D from eqn.5.9.4 as alr that is required is a knowredge of the

position of the coM rerative to its originar position at a

number of time j-ntervals. This quantity sguared, averaged and

plotted as a function of time allows a slope to be determined

graphically e or otherwise, from which D can be obtained.

Eqn.5.9.3, however, requires a detaired accurate knowledge of

ottt)ri which requires the storage of much more information, in

the form of velocity vectors, and a large amount of

correlating. For systems in which diffusive relaxation times

are short it has been shown previously that reliable estimates

can be obtained from both methods tOOl.

For the reasons stated above the VACF has only been

determined for short times, ;2ps, whereas the the mean squared

displacement has been forlowed for much longer periods. ev(t)'

E = Iim. -- Ez(t)/st
tfl
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and E'(t).'are shown in figs.5.18 and 5.I9. From fig.5.I9 it

can be seen that flexane clearly diffuses more rapidly than

hexane and this is quantified by the diffusion coefficients

obtained from the slopes of these graphs given in table 5.6.

Also given in table 5.6. is the value for D obtained by

numerically integrating the VACFs shown in fig.5.t8.

Table 5.6. The diffusion coefficients for hexane and flexane

obtained from :-

(a) the mean squared displacements and

(b) the integral over the velocity auto-correlation function.

Hexane 9.35+A . A2 4.49+9.98

Flexane a .53+A . LA 4.96+A.A6

There is a large disparity in the values obtained from

the different expressions but this is not unlikely considering

the fact that the VACF for both fluids shows a tendency to

remain negative out to at least 2ps and it is known for other

fluids that this long 
frme 

tail can persist for much longer

[126]. Truncation of CV(t) in this case wil1, thus, result in

the observed overestimation of D.

(a)

U/10I-P,#s-1

The general form of the

rapid decay is followed by a

t=2ps beyond which (Oy(t)-9.

(b)

D/10 
srnis-l

VACFs is the samer on initial

long negative region out to about

In the case of hexane the
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negative part of the function is much more

flexane with the result that the integral

therefore, D, is less for hexane than for

pronounced than in

over Cv(tlt, and,

flexane.

The two minima that appear in both functions, at t-A.25ps

and t-0.55ps, are characteristic of molecular fluids II1I].

Resolution of the VACF into directions parallel and

perpendicular to the end-to-end vector, ItB, are shown in

figs.5.2A and 5.2L for hexane and flexane where

6r,,{t) = (\Irr(o).lrr(t)}/<y;(o)>, (5.e.5)

ti Qvl(t)' = <l1(o)'yr(t)>z<yi(o) >;

$ir = (!'irs)ir"

I c5.g.CI

and ,!l = ! - lrr .

These clearry show that the double minima originates from the

motion perpendicular to 116. This has previously been

interpreted for diatomics [11r] as being caused by successive

collisions of either end of the molecule. The results here

suggest that it is a feature of elongated molecules in

general. It can also be seen from figs.s.20 and 5.2L that

there is a less pronounced negative dip in frexane for both

Cv,,(t), ana itOT, as was the case for l,ov(t) , which shows

that the enhanced diffusion does not occur specificarly in
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either of the directions but is an isotropic effect.

The integrals of these

the diffusion coefficients

Dl, to 116 but as these are

evaluating D from Cv(t)- the

and is given, along with the

functions would give values for

parallel , D,i .t, and perpendicular,

subject to the same problems as

ratio DX/D!.-has been calculated

zero time values, in table 5.7.

Tabre 5.7 The mean squared velocities and the rerative

diffusion coefficients parallel and perpendicular to ,r"r in

hexane and flexane aL T-2AAK.

<yu'(o)>/rt"-' <yitol> /*{' DrlDI

Hexane L89AA+4LA 3AA2A+5AA L.32+A.23

Flexane LA79A+46A 37544+429 L.A4+4.49

The factor of two difference between Cq,1(0);; and CvI@) ,

is simpry caused by the fact that there i"-orrry--3ne aegieJ ot

freedom associated with the velocity parallel to 11e whereas

the remaining two degrees of freedom are associated with the

velocity perpendicular to ir"'. What is significant is that

fr1{Dl i" in both cases greater than one which shows that the

molecules diffuse twice as fast in a direction parallel to rre'

than they do in any possible perpendicular direction.

To corroborate this finding the mean

displacements perpendicular and parallel

calculated using the equations

squared
q

to rf,iGl were
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nlttl = < rT1(s) ds t)4,)

, where the definitions of Eili and gilare as in eqns.5.9.5 and

5.9.6. The results are shown in figs.:.r, and 5.23 and the

close simirarity of the curves tor ,ffi(t)i ana fftti in both

IF i\

(5;,9i;?),",'

and

t(l
o

'(6.9;8)

cases bears out the previous observation of enhanced diffusion

parallel to Iial.

Qualitatively the larger diffusion coefficient of flexane

can be explained by the less negative dip in the VACF. This

shows that in flexane there is less of a tendency for the COM

velocity to reverse its direction so it doesn't return as

close to its starting position after each 'collision, and,

thus, diffuses further at each collision. This is reasonable

as the relaxation of the internal modes of flexane is fast

enough to cushion the impact of the impact of two colliding

molecules whereas in hexane the dihedral angle potential

prevents this occuring to a large extent.
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Figure 5.22
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5.LA Correlation Functions for Eorce, Reorientation

of evidence which supports the case for harder

hexane is the mean squared force, 
'1S(OD- 

,

with the mean squared torque, <Ii(0)>,r., in

and Stress

One piece

collisions in

given together

table 5.8.

Table 5.8 The mean squared force and torque for hexane

and flexane from equilibrium simulations aE T-2AAK.

Hexane Flexane

' (I?(o)>/to-l?tf 
'.

<I?toI >rro-e9t{zu?l'

4.L86+A.Ag2

a .642+A . AL2

4.L77+A.AA4

9.53A+A.gL2

As can be seen the mean squared force in the hexane system is

greater than that in the flexane system.

The normalized correlation functions for the force and

the torque are shown in figs.5.24 and 5.25 respectively. The

only discernible difference is one of slightly less damped

oscillations for hexane. one other point to note is that the

normalized correlation functions for torque and force

coincide. This result indicates that the reorientation of

these morecules is largely decoupled from the fluctuations in

the forces. To check this the correration function for the

normalized end-to-end vector, er(Ll , has been calculated from
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cr(t) = <ire(O).ire(t)> l_ ro. ro. t)i

Althotigh ,,Ere is a crude measure of the orientation of a

molecule its -relaxation can only be the same as or faster than

that of the 'true' orientation as the internal modes can only

aid decorreration. The function Cr(t) is shown for hexane and

flexane in fig.5.26. It can be seen from this figure that in

the time it takes for the forces to relax, -Ips, there is only

a smalI change in Ct(t) confirming the decoupling of

reorientation from the force fructuations. cr(t) for frexane

decays more rapidly than for hexane, indeed the best fits to

the form

Ct(t) ,= exp(-t,/r),

give estimates for the relaxation time, .r_, to be -31ps and

-7aps for frexane and hexane respectj-very. How much of this

difference in the relaxation times is accounted for by the

ease of internal rotations in frexane and how much is caused

by a 'true' difference in the rate of reorientation is not

obvious from these results. To obtain this information would

require the calculation of a more meaningful orientational

correlation functionr possibly based on the vectors which

diagonalise the moment of inertia tensor. For flexible

molecules these vectors also change with time, Iike f16', but

the actual process of having to diagonalise N matrices at each

step the orientation is needed wourd be quite time consuming
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Figure 5.26 The norralired auto-correlation function

for the end-to-end vector 6r{t) va. t,
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and was not considered worthwhile for the purposes for which

the orientation was required here.

To complete the characterisation of these fluids at

equilibrium one other correlation function has been evaluated.

This is the stress correlation function, CB(t) , defined as

cs(t) = <oq'(0)%!(t))

, where o* is an off-diagonal element of the stress tensor.

rn theory it is possibre to determine the viscosity from .oh(t)

but because of the problems already discussed of poor

statistics, stemming from its collective nature, and long time

correlations, it is impractical for this purpose within

present day limitations. It does produce two useful pieces of

information though , the infinite frequency shear modulus, {l-

!,, 5&("rlr_U/*El , and the form of the stress relaxation, ar

least at short times. The normalized stress correlation

functions, 0"{t)}, are shown in figs.5.27 and 5.2g for hexane

and flexane. &"(t) was averaged over all possible

off-diagonal elements of the stress tensor, the total length

of the averaging period being -38ps for hexane and 26ps for

flexane. The mean squared stress, resultant 0[i. and

viscosity, obtained from numerically integrating Gg(t), are

given in table 5.9.
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Figure 5.28 Ag fi9.5.27 for flexane, T-Z0OB,.
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Tab1e 5.9 The mean squared stress , infinite frequency

shear modulus and viscosity determined from the stress

correlation function for hexane and flexane at T*2AAK.

Hexane

Flexane

-9loPa
4.3

4.L

n/mPa s

L .3+A .4

a .5+a.2

l<ofirtot>zryt""i

9.62

4.59

From the figures it can be seen that the initial

relaxation is complete within -A.2ps which, understandably,

coincides with that of the intermolecular forces which largely

determine the stress. rn flexane c;(t)i exhibits a pronounced

negative dip in this early part of-tfr"-relaxation which

appears to be dampened out in hexane. Beyond about A.4ps it

becomes difficult to distinguish the actual form of dTf from

the noise but from the integrals, not shown here, it is clear

that C;(t)l has a long positive tail which causes the integrand

to, on average riser out to at least 5ps.

Like many of the other static intermolecular properties

of these two systems the mean squared stress, and hence d',

are very similar. The viscosities evaluated from,Cr(fi are

not, however, differing by a factor of about two despite the

large error bars. How much credence is to be placed in these

varues for the viscosity must be tempered by the previous poor

comparisons made already between f\ determined from S(q and n

determined by non-equilibrium methods.
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5.1I Conclusions

The principal aim in this study is to determine the

extent to which flexibility affects the rheological , i.e.

flow, properties of molecular fluids. So far it has been

shown that the equilibrium static intermolecular properties of

these fluids are very similar but the intramolecular structure

and dynamics are quite differ!Dt. Furthermore, the internal

structure and dynamics has been found to affect the diffusive

motion of the molecules to a significant extent. This, and

the results for the stress correlation function, raise the

possibility of different flow behaviour particularly as the

most important rheological property r-1r the viscosity, can be

related to the inverse of the diffusion coefficient EL277. To

determine whether this was the case HSNEMD simulations were

performed, the results of which are given in the next section.
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CHAPTER 6

HEXANE AND FLEXANE : NON.EQUILIBRIUM RESULTS AT 2AAK

6.I Introduction

To measure the rheological properties of these systems

the method of HSNEMD was used as described already in

s!c.2.L5. The general procedure was to apply a step function

shear rate, f , to a configuration which was either at

equilibrium or at a steady state at the next lowest shear

approach was used,

could be observed,

Iatter method was

required to attain

so that ttre relaxation to a

whereas for the higher shear

employed, so as to reduce the

a steady state.

steady state

rates the

amount of time

rate. For the shear rates ress than&ryo+&d** the former

Shear rates of L,2,5 , LA and zg*IW. and 2, 5 . La and

2g*IilBhS;'; ,"t" appried to the hexane and

respectively. To monitor the relaxation

components of the stress/pressure tensor,

collective orientation tensor, D, defined

flexane systems

to a steady state the

eqn.2.LL.3, and a

as

have been followed as a function of time after the imposition

of a step function change in shear rate. The most important

components ot irr"se tensors are the off-diagonal elements 'JHt
xu:.
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and U-j-i wtrich dj-rectly couple to the shear for the geometry of
xz

arr" Jio, imposed here, ':',21=ffI' The other off-diagonar

components are small for this flow symmetry. The on-diagonal

components of the tensors are also important , especially

those of the stress tensor with regard to the normal pressure

effects.

6.2 Results at 2gAK

In the previous simulations, on simple diatomic and

triatomic molecules, relaxation to a steady state presented no

problems as it occurred rapidly within a few picoseconds of

applying the step function in shear rate. In these much more

complex systems it was found that the relaxation of the

alignment was particularly slow requiring of order 50ps to

approach close to its long time va1ue. The stress, however,

apparently relaxed much faster. This is demonstrated in

fig.6.I where the development of o*r(i),, and $S*"(t) are shown,

normalized by their estimated long time values, for the case

of a shear rate ot [,rirotoft1. appried as a step function to an

equilibrium sample of hexane. The stress correlation

function, discussed previously and shown in fj-1.5.27,

indicates that the initial relaxation of the stress will be

rapid but will then be followed by a period of slower

relaxation to its final long time vaIue. In an experiment

such as this it is difficult to see any long time relaxation

in the stress because of the large and rapid fluctuations in
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this property. Indeed, from table 5.9 it can be seen that the

root mean square value of the stress is of order 256bar.

This is not the case for the alignment which varies much

more slowly and fluctuates much less. It is clear from

fig.6.I that the collective orientation requires a long time

to reach a steady state. This is to be expected as the rate

of collective reorientation must be determined to a large

extent by that of the single molecule reorientation. As has

been shown in sec.5.LA single molecule relaxation times are in

the tens of picoseconds range which is eonsistent with the

relaxation time ot\=25ns for the best fit of E;z(t) to the

form

&;r
Diir(t)/Dx1(o) = I - exp('rtlt)

A corresponding fit to .df.,(il.q.r gives a value of tty3ps which

means that the stress t**liio., is complete within -IOps

which agrees with the result from the stress correlation

function shown in sec.5.16. The conclusion from this must be

that although the non-attainance of a steady state in the

coltective orientational order implies a similar state of

affairs for the intermolecular structure, and hence the

stress, this long time relaxation of the stress provides a

negligible contribution to the viscosity at least for the

large perturbation applied here for which a highly non-linear

response would be expected.
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The relaxation times for the best fits to the form of

eqn.6.2.I are given in table 6.1 for hexane and flexane at all

the shear rates in which an equilibrium fluid was perturbed.

.^ *,, G.

Table 6.1 The best fit. d'values for the form of D*gft):. os

given in eqn.6.2.L, following a step function appficaiion-of a

shear ratJ, tS, to a sample of hexane and flexane aL T'2AAK-

Dfi6"), is the estimated long time value of ffil .

f,r/p,

Hexane

Hexane

Flexane

Hexane

Flexane

5

5

25.4

2A.g

LA.A

9.5

6.5

oD i'; (Eli
xz-

g.LsA

a.L74

a.L2A

a.242

9.L75

Two points to note are that tfre ,"-F.ralues decrease with

increasing yshowing the non-linearity of the responses and

4
that*r for hexane is larger than that for flexane. The

difference between the rates of collective reorientation in

hexane and flexane is roughly a factor of two, which

corresponds with the difference between the rates for single

particle reorientation, discussed in sec.5.IO This is

consistent with the supposition that the rate of collective

realignment due to shear is closely connected with the rate of

reorientation of individual molecules at equilibrium.

249



F*--*' -'-

I

i 
t,

.:
i

and

and

Steady state averages of some thermodynamic properties

the significant components of the stress/pressure tensor

alignment tensor are given in tables 6.2, 6.3 and 6.4.
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Table 6.2 The mean thermodynamic functions obtained from

the steady state shear calculations on hexane and flexane,

T-2AAK, (* indicates calculated for comparison only). The

figures in parentheses are the total time of the simulation.

Hexane

e /bar4 s"F
.f

u ! ,'o- T/K

&, *flJ.r'rl-t i.rror-t

LA

2A

-37484
+L2A

-37 554

lsa

-37544
+84

-37 4gA
+.L24

-37294
+L2A

-5Ar2A
+l2A

-5AA6g
+64

-49739
+34

-49434
+54

-48854
+94

5r5A 2AA.AA
+2A +A.gA

5A4A 2AA.AL
+7s ls.aL

47Ag 2AA.A4
+6A lA.AL

455A 2Ag.Lg
+7A lA.Ag

4A7A 2A9.26
+LAA +4.42

Length
of run
/ps

4A
(1o8)

6A
(108)

6g
(1a3)

4B
(48)

48
(48 )

Length
of run
/ps

L22
(Lsa')

82
(r17)

42
(La6)

46
(La4)

734
+84

8Ag
+54

LL3g
+24

L37A
+LA

L85g
+64

Flexane

tttlz-i

2

5

LA

2A

- .,{! , 

*}

u :o . o*. 
-. T/K

/tw{ /rr.o:--: 7inol-'
e /bar

-42324
+74

-42244
+84

-42A34
+66

-4L664
+L3A

-498L4
+74

-49729
+84

-495L4
+64

-49L54
+L3A

3ALAA
+364

29874
y5a

28624
+364

28664
+6Ag

2AA.gg
+4.42

2ga.a2

la.aL

2AA.A8
+A.AL

244.27
+a.42

374
+54

464
+54

694
+54

999
+LLA

2LL



ry#ept&@-'

Hexane

@

Tab1e 6.3 The mean shear stress, resultant shear

viscosity and mean normal presssure components from the steady

state calculation on hexane and flexane, T-2ggK.

1

2

5

LA

2g

fe&ffi
292+43

495+22

75L+5A

897+L2

1r35+55

nr/mPa 's

2.9L9+9.434

2.477+9.LLA

L.5g]-+A.LAA

a.897+A.gL2

9.568+4.428

7A2+77

72L+65

898+69

LAA4+92

L23L+44

6r5+87

737+46

969+LA

1318+58

LELg+LA7

74L+62

93r+66

L52A+39

L79L+66

25AL+88

Flexane

,'l-rd%r oU4#nrl. g/mPa s nHfuM' 8..ftd
vtr

v:;;w
2

5

LA

2A

287+69

532+63

759+66

LLLT+92

I.437+A.346

L.A65+4.L27

9.759+A.966

9.558+A.446

3AA+85

359+69

342!LsA

485.+lLg

354+77

4A5!LA9

544+95

786+L62

436+74

618+79

884+1r2

1323+187
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Table 6.4 The mean significant

alignment tensor obtained from the

calculations on hexane and flexane,

components of the

steady state shear

T-2AAK.

Hexane

I

2

5

LA

2A

'D'" 
I

t<z

a.LSa+A.ALL

9.L74+g.AA7

a.292+a.aag

a.2L6+A.Ag7

a.L89+A.ALg

A.L28+g.AL6

a.L75+g.AL2

9.L94+A.ALs

a.L86+A.ALs

,D -L/3xx

A.A53+A.AL3

a.a99+a.aL3

a.L88+A.AL8

A.265+A.AL4

9.3L6+A.AL7

l{r -rl3'Iry

-w agg*a . aL|

-a.a53+g.aag

-A.A76+A.AL2

-a.L32+A.AA5

-a.L49+A.g2A

Wt/s
-a.a4a+g.aag

-a.945+a.aL2

-a.LL3+A.gL2

-g.L3L+A.AL2

-9.L66+A.AL4

Flexane

u\a:t D*, D -L/3xx=:-
A.A84+A.A2L

g. L6B+A.ALL

a.L89+g.AL3

a.242+A.ALs

D -L/3w
-9.438+a.gLa

-a.Lgg+a.aa7

-a.aga+a.gL2

-a . LLA+A .AL7

D -L/32Z

-wa+s*a.aL2

-a.a59+g.aLL

-a.aga+a.gL2

-a.r3LJ,.aLs

2

5

LA

2A

6.3 The Shear Rate Dependence of the Viscosity

In fLg.6.2 the shear rate dependent viscositiesr given in

table 6.3, are plotted as a function of the sguare root of the

shear rate for both hexane and flexane. The curves show

characteristic shear thinning behaviour but to differing

extents. At the lowest shear rate the viscosities differ by

at least a factor of two but hexane shear thins much more than
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flexane so that at the highest shear rates there is virtually

no difference in the viscosities.

As for the ottrer fluids the fiffi#$ data has been fitted to

the three different theories discussed in sec.3.5. The

parameters for the best fits to these theories are given in

table 6.5 together with the root mean squared difference

(RMSD) between the data points and the fitted curves.

Figs.6.3 and 6.4 show the actual best fit curves for all three

predictions for hexane and flexane respectively.

Table 6.5 The best fit parameters and root mean square

differences (RMSD) for the predictions of the shear rate

dependence of the viscosity from the theories of Hess,

Ree-Eyring(nr) and Kawasaki-Gunton(KG) , (see sec.3.5), for

the f,n(/)vs.itr' data for hexane and flexane , T*2AAK.
t'l_-

Hexane Flexane

RE

Hess

n( O ) /mPa
W /ps
RMSD/mPa

$(0 ) /mPa
ffii /ps
k-
RMSD/mPa

n( 0 ) /rrPa-i' - 

/to*F, ,#
RMSD/mPa s

S

s

s

S

s

3 .47
LL2.2

9.456

2.95
2L.6
9.868
a.a6a

3.37
9.694
a .259

1.58
44.8
a.g3a

L .52
L6.2

a .699
g.a2a

L.76
9.284
4.479

KG

the RMSD's it

2L4
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7.O

2.5

o.o

o,o

.'nn(y) vs. /

predict ions

Ree-Eyring

(-. -. -) .

, hexane

of the

(- -)

,_ _--:'' a'.. . i. :_ I :_

(A). Fits to the

theories of Eess (-)

and Kawasaki-Gunton

4-o

,.5

q

o
o-
E

C

2.O

1.5

t.o

o.5

o.0 0.5 5.0b.5t.5l.o 2.o 2.' 3. 0 ,.5 4,O

y"'/ | ot s-t 
/2

2.5 
'.0 

,.3 4.o

1""/ loss-l/2

Figure 6.4 As fig.6.3 for flexane, T-200f,.

z5

a

o
o-
E

.>.

C

zo

1.5

1.0

o,5

\- -.
. --\

a.o o.5 t,0 r.5 2.0 +,5 5.0



KG square root law is particularly poor at predicting the BqI,

behaviour. In hexane the KG curve shows a systematic and

large deviation from the computed points. In flexane the

deviation-is not as large because of the smaller amount of

shear thinning but there is still a tendency for the data to

lie systematically above and below the line. Indeed, the

shape of Lhe n(r}, vs.r,- curves is much better represented by

the Hess and RE fits. In terms of the RMSD's there is little

to choose between these two in either case although it has to

be said that there is one additional adjustable parameter in

the Hess prediction. In flexane both give similar estimates

for n(O) but in hexane there is a substantial difference of

-O.SmEa si; There is then a good deal of imprecision in any

result quoted for the n(O) of hexane. This is compounded if

we use the criterion of AIIen and Kivelson t7g) who choose

ttrose data points which fit to the * law to estimate the
!

l=A vLscosity, reasoning that at high shear rates a

'saturation effect' causes the viscosity to diverge from the

square root dependence. If this same criterion is applied to

the lowest three shear rates for hexane and flexane further

estimates of the zero shear rate viscosity can be obtained of

^r4.ImPa s and 2.AroPa s respectively. Consequently the n(@)'s

of these two fluids are quoted as 3.5!A.6mPa s and

L.7+A.3mPa s for hexane and flexane respectively.

Despite the uncertainty in the estimates of the

equilibrium viscosities there is still a relatively large
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difference between the values for the two systems. It must be

concluded that the flexibility of a molecule is a significant

factor in determining this the most fundamental of rheological

properties.

6.4 Shear Induced Alignment

In figs.6.5-+6.8 the data given in table 6.4 is plotted

as a function of the square root of the shear rate.

Qualitatively the same behaviour is found in hexane and

flexane as in all the other models previously studied with d-T

and ;Dii increasing whilst DrO and D* decrease with 
lA1%.t.

This shows the expected alignment, for the type of shear

applied, of the'Iong'axis of these molecules in the XZ

p1ane. f'or all the the components of P there is a tendency

for the greater change to occur in hexane implying more

alignment of the rr" vectors in hexane than in flexane.

Significantly the magnitudes of the changes in these

components are larger for these molecules than for the

diatomics and triatomics. A likely result considering the

. greater anisotropy of these polyatomic models but not an

obvious result because of the demonstrated density dependence

ot P(2). one further interesting point is that.tD--l(r) passes
'r 11. 

'

through a maximum in both cases at a shear rate of about

4! 
t . This has not been observed before but the

possibility of it happening has already been discussed in

sec. 3. 7.
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The ability of,D*, to pass through a maximum does not

make it the best indicator of the amount of alignment in the

system. A possibly better, and more experimentally relevant,

measurement is afforded by the extinction angle,lG;', which is

a function of the off and on diagonal elements of 9, as

defined in eqn.3.7.2. The shear rate dependent values of the

extinction angle, ee(ftsi are given in table 6.6.

Table 6.6 The extinction angle obtained from the steady

and flexane at T-2AAK.state shear calculations on hexane

Hexane Flexane

f,y'lOlos-r 5"/aes 1erldeg

I

2

5

LA

2A

36 .4+l .7

33.8+r.5

26 .6+l .2

23.7+L.L

r9.6+1.6

31 . 6+3. I

28.5+L.4

27 .L+L.5

22 .5+L .5

In fig.6.9 !s(r) is plotted as a function of the sguare

root of the shear rate along with the predictions of Hess's

theory for this property which is given by eqn.3.7.3 in the

first approximation. The values of r being taken from the

best fits to the viscosity data given in table 6.5. To first

approximations Hess's theory fails to predict any change in

,b.-* under shear and so not surprisingly does not do well at
]ry

predicting the form of e"(/),, as was the case with diatomics.

In comparison hexane and flexane show very similar behaviour
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Figure 6.9 The extinction aDgle e.(z) vs. fE, hexane

(EI) and flexane (A), T-200(. Conparison

with the prediction of Hess's theory,

hexane (-) and flexane (- -).
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for l*A{fi with hexane having slightly lower values at the

higher shear rates, again pointing to slightly more alignment

in hexane. This similarity in 1n"(/), contrasts sharply with

the behaviour of T(f)l which sto*" 
"ignificant 

differences in

both magnitude and variat-ion with f, between hexane and

flexane. This again could be construed as an indication of

the looseness of the coupling between stress and molecular
,

reorientation under shear.

As with the diatomics the probability densities for the

direction cosines, [Do] d=ltYtZ't have been calculated using

the definitions and methods described in sec.3.7, except that

for these molecule=,irdi has been substituted for'ii .

Figs.6.LA to 6.1I show these functions at the highest shear

rate used of 8*tr011e-1. . There is considerable distortion of

the probability densities away from the equilibrium

distribution of ,p(DJ=l. for all values of ,Do, especially in

the case of ,I)* which shows a very strong tendency for

alignment to occur along the x-axis. The''Lp(Di) and nqr)l "t"
consistent with this streaming of molecules in this direction,

as discussed in sec.3.7. These functions also underline the

similarity in the behaviour of the orientation under shear of

hexane and flexane as the difference in the ,p(Itr)is are small.
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Figure 6. I0 The nornalised probability density for the

x direction cosine e(D")vs. Dx, hexane (a)

and flexane (b), /=Z*LOtt"-t, T-200f,.
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Figure 6.11 The nornalised probability densities for

the y direction cosines p(Dv) vs. Dy, (1)

and the z direction cosines e(Dz) vs. Dz,

(2, , hexane (-) and f lexane (- -),

!=Z*Lolls-1, T-200f,.
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6.5 Non-equilibrium thermodynamics

With the rigid model molecules previously studied it has

been seen that the pressure and total energy are functions of

the shear rate. Although the findings for diatomics and

triatomics have confirmed a power law dependence of these

variables upon shear rate the actual exponent has tended to

fal1 below the value of 1.5 expected by theory U4,9A). The

introduction of flexibility into the model molecules means

that the change in total energy under shear at constant

temperature is no longer caused by the change in the

intermolecular potential energy alone. Internal

rearrangements of ttre molecules will cause changes in the

dihedral angle potential energy and the intramolecular

contribution to the LJ L2-6 potential energy. For this reason

two other functions, e(fi and Aoo(/) defined as

-?'

a0(r) = O(f)"'-'O(0)

rao*(f) s oq(r) -"oJO) (6.S.2F

where,O is Lhe total (inter + intra) L.T L2-6 potential energy

and O; is the dihedral angle potential potential energlr havec 
-':;

been calculated as well as grU(/) - and lP(r),. . Altho"gh ,5; 
does

not contribute to the total energy in flexane lA0o-has been

calculated for comparison with i60o for hexane. These

functions are given in table 6.;
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Table 6.7 The functions +U(ll , AO(r.):, 60otli, ""a ffitrji

obtained from the steady state shear calculations on hexane

and flexane aL T-2AAK. ( * indicates calculated for

comparison on1y. )

Hexane

b(r)l.rnrr.' 1 4oo(l)/Jnol'lr' ap(f)/bar{,449"j
I

2

5

LA

2A

Flexane

iau(*)lrdor-1,

-LSA+L4A

-22A+84

-2LA+LLg

-6A+t4A

4A+L4g

L5A+L3A

2LA+74

559+54

84A+74

L42A+99

r&(f)/Jmr4:1;

-3AA+64

-42A+94

-764+89

-9LA+94

-L5LA+64

'lt,"1g'-l
-324+6gA

-55A+664

-LSAA+6gA

-L764+774

LAA+90

259+64

584+39

829+34

L3AA+79

Trrrole ,;t :tut(*) /,trno}-r

2

5

LA

2A

5+94

9A+LgA

3AA+94

674+L4A

5+94

9A+LAA

3AA+99

6Lg+L4g

"AF(r) 
/rar

9A+7A

LBA+14

4LA+74

729+L2g

It can be seen from the table that the inclusion of the

dihedral angle potential has a marked effect. In flexane, and

the previous models used, .dl(r) is effectively the same as

AO(r) because of the constraint of constant temperature. The

difference between the two at high shear rates being caused by

the slight temperature rise that occurs when the constant

temperature algorithm cannot remove all of the heat generated

by the f1ow. So as ls/.l) increases AIr(r) must increase in

flexane. In hexane O_o gives U an extra degree of energetic
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freedom so even though @,,, increases it turns out that -4{4

does not increase because of the counterbalancing effect of

the decrease i" l.t&dtY*
r ':-. ^..

For this reason . llog;o(lr0d*lZmotr'b'i

has been plotted against fe*io{r*tt#og$ in fig.6.L2 rather

than,Ioe1'O(au{r)./JEqI;1i . has

been plotted in the same way. The points at higher shear

rates are once again more precise because of the larger

differences from the equilibrium value of the energy and the

pressure. From the figures it can be seen that the points fit

reasonably well to the straight line form , Et least at the

higher shear rates, expected for an algebraic dependence upon

shear rate of the type given in eqn.3.8.3 for the pressure and

by

Ioe ,o(&(,y.1'7;uo1;r ) 
. 
= ,c*,tISSib (tlt}'os .-1; + 3o6r;(srlJuol-t )

or alternatively

i aolytr ,= 01(f/:Lol9grl )c

,where ,_t i" a state dependent constant, for the total LJ L2-6

potential energy. The values obtained for the slopes from the

straight lines shown in figs.6.L2 and 6.13 are given in table

6.8 along with the values estimated for the constants of

proportionality.
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Tab1e 6.8 The slopes

constants ('Pr r6sfl r$, i) for

forms given in eqns.3.B.3 and 6.5.3 from the steady state

calculations on hexane and flexane aL T-2AAK.

oilnot-l c

(a and c) and proportionality
:

the fits of !O(r). and AP(r). to the

P.i/Uar a

Hexane

Flexane

224

62

g .59

a.aL

r65

22

a.72

r.13

For both the pressure and the LJ potential energy hexane

shows the greater actual change in these properties under

shear but also a slower rate of increase. This behaviour

leads to the situation given in table 6.8 where r'i andlQir6rs

greater in hexane but a and c are less. AII the slopes faII

weII below the value of I.5 demanded by theory even allowing

for the large uncertainties there is in the data. It appears

that from this, and the earlier data on diatomics and

triatomics, that although an algebraic dependence of the

pressure and potential energy upon shear rate is a reasonable

approximation the actual exponent is certainly molecule

dependent and probably state dependent also.

The interesting finding that the dihedral angle potential

energy ctranges under shear in hexane is made more credible by

the fact that Sd(r)i also dicreases in flexane whichr &s no

forces derive from Oo in flexane, indicates that even in a

model free of hindered internal rotation the shear flow does

impart a different influence on the structure of the molecules
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than at equilibrium. The conformational changes underlying

this phenomenon will be discussed in sec.6.7.

As with the previous models the pressure increase has

been resolved into its component parts. This has been

where

achieved in this case by calculating the function" ifr*ffi#

defined as

.irrffi1#;".F"P4(f) - P(r "'"

This differs from the definition given previously, eqn.3.8.5,

as in the hexane and flexane calculations 1@ derives from

the stress tensor which is averaged over the period for which

, l't 
appears to be at steady state whereas ,8(f;ta'i" averaged

:

over the period shown in table 6.2 Ttre function" l@gli are

given in table 6.9.
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Table 6. 9 The . functions {aP.n4t*$ as defined in

the steady state shear

T*2AAK.

Hexane

calculations on hexane

eqn.6.5.4 from

and flexane at

ryttiros':+l

I

2

5

LA

2A

Flexane

-!d}o{-ortt'
2

5

LA

2g

p:&tzu""

69A+84

aaa+34

LL3A+34

L37A+74

LA5A+84

H*rlbalr:

36A+89

46A+94

599+LAA

864+L5g

2g+LLA

-BA+74

-23A+94

-374+L2A

-624+94

::apxf(tr7kr "

-6A+L2A

-LLA+LLA

-25A+L4A

-3AA+LgA

-7o+LLA

-6A!44

-L6A+74

-54+94

-4slL3A

aP- 'rf)lb8
IrJr 

-

-LA-Ls

-59+L A

-59+L4A

-8A+L9A

5A+lAA

L3A+4A

394+BA

424+LAA

659+L2A

arrjitrff.&r:rt

7A+LLA

L6A+L2A

29A+L5A

469+2LA

:-E?'

aloJf)/.bar 'aryi(ihlber ae;r(f)/ttr

These functions show a clear trend in the normal Pressure
l.f

components which is in general f**tffieff.). , '"f*{f):.r{*} and

Pzrey>P(Yl . This is the same *r*ri*rt to,r.ra ir*fr" 
"frlorine

systems at high density which implies tliat this is the more

typical reaction of dense fluids to this kind of flow whereas

the different trends found in the ethane and propane case are

probably characteristic of a low density high temperature

fluid.
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6.6 Shear Induced Intermolecular Structural Changes

The modified fluid structure which underlies the changes

in pressure and intermolecular energy have been probed in the

usual way by calculating distributiion functions. Apart from

the normal r.d.fs g(r) and G(R), for the individual sites and

the centres of mass respectively, a directional distribution

function for COI{ separation has been calculated and also the

orientational cross correlation function iir(Bf defined in

sec. 5 . 6.

In figs.6.L4 and 6.15 the g(r)s and G(R)s are given for

hexane and f lexane at the highest shear rate 
"f 'UazJlql'"-l'

together with the same functions at equilibrium. These

functions are scalar so are not ideal for probing this highly

oriented structure which is obviously present from the results

for the alignment tensor. Nevertheless, there are some

changes in the r.d.fs. g(r) shows a slight tendency for the

height of the first peak to increase in both cases but is in

general very similar to the equilibrium g(r). However, the

c(R)s show a muctr greater change as the first peak is reduced

in width, increased in height and is moved slightly to smaller

values of R.The second peak for hexane, which is difficult to

discern at equilibrium, is made more distinct by the shear

flow. These findings are consistent with the previously noted

changes in the energy and the pressure and also the alignment.
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Fidure 6. 14 g(r) vs. r,

)r=2*Lo11s- 
I

hexane (1) and

(-) and f=O

flexaoe (2),

(_. -) , T-200f,.
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Figure 6.15 C(R) vs. n,

f=2*10 
I ls- 1

hexane (1) and

(-) and /=o

flexane (2) 
'

(-.-) , T,200f .

2.0

t.8

1.6

1.4

,.2

1.0

0.8

0.6

o6

o.2

0.o

G (R)

G (R)

0,o ,.50,5 t., 2.O

R/O

2.O

t,8

t.6

t.+

I,L

l.o

o.6

o.d

0.4

o.2

o.o

ZO

R/o

(1)

I
I

/'

Q)

/\.
/ \-/'^'r ,F--(._-\

I

0.0 d5 l.o 1.5 2.5 3.0 ,5



To try and understand more about the intermolecular

rearrangements under shear directional distribution functions,

[q(q),,], have been calculated. rn the x direction G(x) is

defined as the mean number of molecules which satisfy the

following three conditions for the COM separation vector

i-!U'llli'Yu'zi.l- 3 -

i)

ii)

iii )

xl<. lxijl ( x+al-

lYijJ < 8/2

lzlil < s/2

divided by the expected number of molecules in this region if

the structure was entirely random i.e. 62ax !VvL' This gives

a measure of the relative probability of finding another

molecule, j, at a separation X in the x direction in a column

of cross-sectional area 8*$f centred on the COM of molecule i.

The dimension S is arbitrary but if S is large, sEtlr compared

to the size of a molecule then molecules are counted which may

have a small x separation but are in fact quite a distant

apart and, therefore, uncorrelated. On the other hand if.llis

too small then the statistics become poor because of the small

numbers of molecules. To try and avoid these pitfalls a value

of F-5.08 was chosen as a compromise. Even so the results

shown in figs.6.16 and 6.17 for aII three directions, for

hexane and flexane at the highest shear rate of ,.,'r-c:441SI1 ,

are still prone to a significant amount of statistical noise

even after being averaged over the entire time the system was
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Figure 6.16 the directional distribution functions for

the separations of the COM in the three

orthogonal directions G(cr) vB. c, for

c=l( (-), c=y (-.-) and r_Z (- -), hexane
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i adjudged to be at a steady state. Nevertheless these functions

reveal some interesting features about the distribution of the

centres of mass. From the figures it can be seen that G(Y)

and G(Z) have the 'usual' r.d.f. type structure with the main

peak at a separation of around 1o and subseguent peaks

diminishing in height at 2o and 3d. G(x) shows a very

different form with no peak at all at Io just a gradual rise

to a broad peak around 26. This is consistent with the result

from the alignment tensor since as these molecules align along

the x-axis much of the columnal region in front, or behind, of

the COM of a molecule in the x direction is taken up by sites

of its own chain forcing the COM of other molecules to be more

distant. In the y and z directions molecules lie parallel to

one another to a large extent, thusr the relatively narrow

peaks at ld. These observations also explain the changes in

G(R) which occur under shear. The narrowing of the first peak

in G(R) results from contributions in the y and z directions

and the more pronounced second peak results not only from G(X)

but also the distinct structure seen in G(Y) and G(Z).

The results for Pt(B) are shown in figs.6.18 and 6.19

once again for the highest shear rate used along with the same

functions at equilibrium, for hexane and flexane respectively.

With a preferred orientation in the system ttre large R value

of ,P1(B)r increases from that of L/3 for a random distribution

of orientations as found at equilibrium. The tendency is for

molecules to be parallel in a sheared fluid so the angle
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Figure 6. 18
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between the gr5 vectors of different molecules, eU, tends to

zero and thus,Pi(E), which is a function of cosoi5lincreases.

It can also be seen that there is Some movement of the peaks
*

i" tf_I) to smaller R consistent with the results for the G(R)

and the G(c)ls.

6.7 Shear Induced Intramolecular Structural Changes

It has been generally assumed that shear flow will tend

to increase the average length of ftexible molecules [128] Uut

it has never been directly observed in real systems. one

previous paper [99] discussed the results of NEMD experiments

on a model of flexible propane but no significant change in

internal structure was observed. With the longer molecules

used here noticeable changes have been found to occur in the

mean intramolecular separations of sites, .dqF.=-Qg&PL, and

the root mean square radii of gyration, !{.1<(1qf-Eil$* ,

--which must ultimately stem from the effect of the shear flow

upon the distribution of conformers and dihedral angles.

In the models of hexane and flexane used here the

distances between neighbours and next neighbours are rigidly

fixed so the mean separations wtrictr can vary 
"t"Jt-rJ=(,[114[!',{-

dr"', dte , d"r', dl[ and dg6 . only computationally is site I

distinguishable from site 6 etc. so the actual quantities

quoted are calculated from 3-

dr+=(dr++das+ds3)/3
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tables 6.LA and

are given as a function of

6. 11

shear rate in

Table 6.10 The shear rate

separation of sites, 
--l'iff'}, 

as

from the equilibrium and steady state shear calculations on

hexane and flexane aL T-2AAK.

Hexane

dependent mean intramolecular

defined in eqns .6.7.1+6.7.3,

'Fdr!ff) /fr Ii"ol /flzxqT!-.
a

I

2

5

LA

2A

Flexane

Y/ltolor.-a

a

2

5

LA

2g

,dtit\ /L
3.582+A.AA4

.?.6L4+A.Ag2

, 
3.628+A.AA6

3 .654+g .AA6

3 .67L+A . AA3

3.7AL+A.gAL

'a*+Q' 
/ A

3 .392+g . ALA

3 .4A4+A .AA7

3 .42L+g . ALA

3.43A+A.AA8

3.442+A.AL2

4.635+A.AA4

4.668+A.AA3

4.687+A.AA8

4.7L2+A.Ag7

4.73L+g.gA5

4.778+A.AAl

ril#$/A

4.4A9+A.AA8

4.426+A.AA8

4.444+A.OLL

4.459+A.AA9

4.473+A.ALA
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5 .569+A . AA7

5.663+A.gLL

5.7AL+A.ALA

5.799+A.ALs

5.843+A.Ag9

5.9L3+A.AgL

di'St*)/E

5.L97+4.924

5.225+A.A2L

5 .27A+g .424

5 .3A2+A.A2L

5.349+A.926



Table 6.11 The shear rate dependenL root mean square

radii of gyration, '.,qid(f); as defined in eqns. 6.7.4-.+6.7.6,

from the equilibrium and steady state shear calculations on

hexane and flexane at T*2A@R.

Hexane

st{fi?/ & *dwl /L {,sb{fl /A81=dul
a

1

2

5

tg

2A

I"lexane

a

2

5

LA

2g

2.862+A.gA3

2.gAL+g.Ag4

2.9L6+A.AA6

2.95A+g.AA6

2 .97 L+g . AA5

3.gag+a.aa2

i.sh,(*') /E

2.6e0ls.AL2

2.7A3+g.AA9

2.723+A .ALL

2.737+A.ALA

2.752+A.AL3

L.873+A.AA2

L.867+A.AA2

L.870+A.AA3

L.862+A.AA2

1.86r+9 .AA2

L .87 6+A . AgL

!'si{*)/L

L.847+A.AA9

L.B4B+A.Ag7

r.843+g.AA7

L.845+A.Ag9

L.84L+A.Ag6

a.9gg+g.aL3

9.898+A.gA5

a.894+A.AA5

9.888+A.AA4

9.883+g.AA3

9.86L+A.AA3

l.qt*)n/8

r A.93L+A.AA9

9.928+A.AA7

a.929+g.AA9

a.924+A.ALL

9.924+A.gA9

As a measure of the etongation of a molecule the mean

separation of sites is a better indicator than the root mean

square radii of gyration as in aII cases f&p'i" a maximum for

the aII trans conformer whereas this is not so for the ttfcl.

The reason for this is that the COM does not necessarily, and

in general will not, lie on the molecule. If, for exampler we

consider the case of an all trans conformer with e0 for all
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the three dihedral angles the COM lies midway between sites 3

and 4 and so iO will be equal to half the bond length i.e.

A.7654. So this case represents the minimum possible value

for ne, This explains the data in tables 6.LA and 6.1I where

it can be seen that'q# increases with shear rate in all cases

but only r,sl+ consistently increases ana .rgtn hexane noticeably

decreases. A11 these results can be interpreted as deriving

from an overall elongation of these molecules under shear.

To compare this effect in hexane and flexane a Percentage

extension'in Slal tras been calculated as

iadr.t ) = 100*(dro($'' r dr11Otrr1/dre(0)

and the results are given in table 6.L2.

Table 6.L2 The function jft*ntffiilr ds defined in eqn.

6.7.7, from the steady state shear calculations on hexane and

flexane at A-2AAK.

Hexane Flexane

i7rdo"=l Ldi'j(f), ,hig,o, ,

Gl.?*7)

5

LA

2A

L.69+A.23

2.37+9.28 A.55+A.6L

3.97+A.3A L.4]-+A.65

4.92+9.2L 2.43+4.6L

6. r8+0.13 2.74+4.68
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In fig.6.20 ,Adia(f) is plotted against the sguare root of

the shear rate. At first sight there appears to be a paradox

in that the more flexible molecule is extended less than the

more rigid molecule under shear. Indeed the -6t extension of

hexane over its equilibrium length is well over twice that of

flexane.This can be explained by considering the energies of

the various configurations of the molecules. In hexane the

all trans conformer is by far the most energetically

favourable because of the overwhelming influence of the

dihedral angle potential. I"loreover, once in the TTT state it

is kept closer to its maximum length by the steepness of the

potential thus in turn maximising die . In flexane the a1l

trans conformer does not coincide with that of lowest energy,

as can be seen from fig.s.L2 in sec.5.7. This is caused by a

combination of the intramolecular L,J interactions which mean

that the minimum energy conformer in flexane has an rita of

about 5.g4,. Thusr drr increase in dia- in flexane causes an

increase in the intramolecular energy. This increase in

energy is small, because of ttre nature of the potential,

compared to the large decrease in intramolecular energy that

occurs when a hexane molecule undergoes a transition from one

of the conformers containing a gauche state to an a1l trans

conformer.

To see this in more detail the probability densities for

the distribution of 
='ro, 

t" and dihedral angles have been

calculated and are shown in figs.6.2L and 6.22 for the highest
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Figure 6.21 The probability dengity for the end-to-end

separation P(rre) vs' r1!r. hexane (1)

and flexane (2), /=2*L0""-t 1-1 and

i=O (-.-), T,,200K.
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Figure 6.22 The probability density

an6le p(c) vs. c, hexane

and flexane (2) , /=2*10 
1
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shear rate along with the same functions at equilbrium. For

the dihedral angles the probability densities show a clear

trend towards more trans states in both hexane and flexane.

To compare these changes further the difference between the

probability densities aL f=A and F2*1011r:l , A?(g), has been

plotted in fLg.6.23 for both hexane and flexane. The function

clearly shows the greater changes which occur in hexane as the

numbers of -angles in the trans state increases at the expense

of those in tfre ;S+ and G- state. Flexane shows a less weII

defined change but there is still a discernible tendency for

the dihedral angles to take up values around the trans and cis

angles $=Oo and 18Oo which gives rise to more 'flattened'

molecules. This is confirmed by the general trend to larger

values of {rO shown in fLg.6.2L for flexane with the retention

of a peak at ri.r-5.A4. corresponding to ttre CTC and TTC

conformers. For hexane fLg.6.2L shows an approximately 3gZ

increase in the number of TTT conformers largely at the

expense of the O+TG--.and GTT conformers. The numbers of TGT

conformers remains almost unaltered by the shear. Why this is

so is not clear but from the equilibrium results it is known

that transitions irr ga, the central dihedral angle r or! if

anything slightly less frequent than those in the outer

angles. It could be then that it is easier for the outer

gauche angles in the G+TG- and GTT conformers to undergo

transitions to form TTT molecules than it. is for the central

angle of a TGT conformer to do the same.
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6.8 SeIf Diffusion

The one dynamic property most likely to be affected by

the shear flow is the self-diffusion through its connection

with the viscosity which has been shown to be a strong

function of *. It would be expected that as the viscosity

fell the diffusion would increase and this has been found to

occur in monatomic fluids tll. With the shear flow

directionality imposed upon the system it is by no means

certain that diffusion will change isotropically especially

with the already observed high degree of alignment in the

system.

To monitor any changes in the diffusion and to see how

anisotropic they are the diffusion coefficients in the three

orthogonal directions of the laboratory frame have been

calculated from

,1, "'.'* '
-2-l-r#

= fz(*))"dSl', r>/S'
I

t
,,f<v*1")

dq,

];J

and

D- = Iin. (st* * 
l' 

;r*& &=y,, -ffi.!),

where -"tffie".fojf2, : ana ilffi.*,ffi,t. are the velocity and position

of the COM of a molecu1e. The definition in eqn.6.8.1

accounts for the fact that "ffi contains a contribution from the

I i,u.,",
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net shear flow in the system which must be subtracted before

calculating the diffusion. As in sec.5.9 the diffusion

coefficients perpendicular and parallel a" & have also been

calculated from the integrals over the correlation functions

given in eqns. 5.9.5 and 5.9.6. once again making the same

adjustment to {$} as in eqn.6.8.I. In table 6.13 the

self-diffusion coefficient, D, which from eqns.6.8.1, 6.8.2

and 5.9.3 is given by the sum of S,I|$ ana ffi; is given along

with its resolution in to the laboratory frame, the ratio of

,ffiS;..-,' l$r,a .f"o the product of the diffusion coefficient and

af,.?=.osity at the particular shear rate.
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Table 6.13 The

defined in the text

O(fln(,f); for hexane

steady state shear

Hexane

_vfior:t
g

I

2

5

LA

2A

Flexane

diffusion coefficients D,Dx,Df,D2, as

Dx./Ej' and the product

from ttre equilibrium and

aL T-2A6K.

, the ratio

and flexane

calculations

! "&, - - 9-Y- 'Dz'

L--*-:::-ZPE;1 - >' a.35 A.L2 g.L2 A.L2

la.a2 ls.aL la.aL +a.aL

a.43 A.Ls A.L5 A.Ls
y.a3 +s.a3 la,a3 y.a3

a.6a a.22 a.L8 A.LA

la.ae +a.a4 y.s4 g.a4

t.a6 a.45 a.29 4.29
la.a7 +a.a7 la.a3 +a.43

2.ga L.g1 g.sa g.sa
+a.L2 fl.L6 ls.se +a.s9

3.39 2.A5 A,64 4.64
!a.69 +A.63 IA.LA y.LA

. D,1 D*,, .,_ 
-_., .k, . szi

r- /I0 'm-s

9.53 A.L7 A.Ll A.L7
y.ra la.a6 la.a6 !4.46

a.BB A.32 A.2A 4.32
y. a8 ls .a5 +a .a3 +a.a5

a.98 A.46 A.25 A.25

la.a5 la.a3 la.a3 !4.s3

L.97 A.89 A.38 A.B3

ls.Lg +a.Lg y.g6 la.La

2.42 L.A4 A .4L g .88
+9.L2 +A.A7 +A.A7 +4.47

Dtflrry trtlpl$,r

L.32
+4.23

1.33
la .2s

1.6r
y.Le

L.4A
+a.L7

. 1.31
Y.LL
r. 54

y.L2

L.23
+4.22

L.26
+a.2L

L.49
+a.23

1. 59

la.Ls
L.79

la.LL
r.93

+4.44

ttfx/ol _!@.
a L.g4

+4.49

I.11
y.L4

L.76
!4. s4

L.7A
ls. L7

1. 17

!4.s7

a.9a
+a.23

L.26
+a.32

L.A4
+4.L3

L.5A
y -Ls

r. 35
+a. L3

LA

2A

The data in table 6.13 is consistent with the well known

experimental finding that a reduced viscosity is indicative of

236



the enhanced diffusion of molecules in the fluid. Although

this is generally applied to the case of changes in viscosity

caused by changes in temperature and/or pressure it seems also

to hold for the case here of an increase in shear rate. The

degree to which an inverse relationship holds between the

viscosity and the diffusion can be judged from the product'ilL,

given in table 6.13. In hexane jER graaually increases with

shear rate but only by a small amount compared to the factor

of almost ten increase in the diffusion coefficient. In
l a..

flexanelDn does not show a consistent trend but is again

reasonably constant considering the fivefold change in D.

These results bear out the strong correlation, though perhaps

not 1:1, between the fluidity, lfn-., and the diffusion

coefficient.

In hexane there is a clear tendency for the diffusion to

be enhanced much more in the x-direction than in the y- or

z-directions , which within errors have the same coefficient

at all shear rates. In flexane the trend for D; and U$ i" the

same but the behaviour of tEaappears much more erratic as it

'oscillates' between the values'for Do and 6lr. This could be

due to a lack of averaging but it t""*" fifefy that there

maybe a different trend in flexane. From the directional

structures of the fluids, given in figs.6.16 and 6.L7, it

might be expected that diffusion would be different in the

x-direction but their is little if any indication that

diffusion in the z-direction should be any different from that

237



in the y-direction in flexane as the density distributions are

very similar.

One other point that can be drawn from table 6.13 is that

the ratio ,DF/DI'. does not show a systematic change with shear

rate in either case. As has been shown diffusion is enhanced

in the x-direction under shear which coincides with that of

the preferred orientation oi the tlt vector of the molecules

(sec.6.4). It would 
"":* 

logical then to assume that

diffusion parallel to ffc, would also be enhanced but this

appears not to be the case. There is, of course, still a

distribution of orientations even at the highest shear rate

(see figs.6.Lg and 6.11) which means that there is a

proportion of molecules with Etc far from being parallel to

the x-axis. What the data in table 6.13 implies is that the

diffusion of these molecules is increased more than those with

their ffi vectors almost paralle1 to the x-axis. This would

have to be the case for em/t to remain low whilst the degree

of alignment continued to rise.
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6.9 Conclusions

These results clearly demonstrate the marked effect the

flexibility of the molecules can have upon the rheological

properties, structure and dynamics of a fluid. It has been

shown that although thermodynamically very similar at

equilibrium their intramolecular dynamic properties differ

significantly which in turn affects the diffusive and

reorientational motion of the molecules. When sheared this

effect manifests itself most notably as a difference in the

zero shear rate viscosity. It is also found that the

non-Newtonian behaviour of these fluids, in particular n(r)

and iP(f), which are of considerable practical importance,

contrast quite sharply with hexane shear thinning to a larger

extent and also showing more 'dilatancy'. It is also believed

that for the first time the extension of molecules under shear

has been demonstrated in a convincing manner.

An important aspect of the comparisons between the two

fluids is the fact that in terms of the intramolecular

potential flexane represents the high temperature limit of

hexane So not only are the differences between two molecules

of varying flexibility, at a similar state point, being probed

but also the likely variation in the rheological properties of

a molecule as a function of temperature. This assumes that at

constant density the effect on the rheological properties of

an increase in temperature is small in those molecules which
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do not have barriers to internal rotation.

It was, thus, proposed that further calculations be

carried out at an elevated temperature. These would reveal

directly the effects on temperature on the rheological

properties of molecules with internal barriers to rotation and

also determine to what extent these effects are predictable

from comparisons between molecules with differing

flexibiLities. Furthermorer os the transition rates for

conformational changes were rather slow at 2gAK it was not

possible to determine the effect of shear uPon these

properties, hopefully the increased temperature, and hence

increased transition rates, might allow this effect to be

characterised.
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CHAPTER 7

HEXANE AND FLEXANE RESULTS AT 3AgK

7.L Introduction

The temperature chosen of 3OOK was again largely

arbitrary but it was realised that to see a noticeable change

in the rates of conformational transitions a substantial

increase in temperature was required. By increasing the

temperature Lo 3AAK the barriers to internal rotation are

effectively reduced by a factor of L/3. It was also suggested

that further calculations might be useful at a point close to

the zero pressure isobar at a higher temperature so as to

compare the effect of increasing the temperature at constant

pressure and at the same time the effect of increasing the

pressure at constant temperature. This was never realised,

however, but the choice of temperature was made with this in

mind as at a temperature of 3AAK and a pressure close to zero

one could be reasonably confident that the model fluid would

still be in a dense liquid phase. It also corresponds to the

temperature regime at which most experimental data is obtained

and this offered the possibility of comparisons with real

n-hexane.
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7.2 Details of the Simulations

Equilibrium configurations of hexane and flexane were

obtained at 3AAK simply by taking the final configurations

from the equilibrium calculations at 2AAK and applying the

constant temperature algorittrm described in sec.2.L5. As no

change was made in the density the pressure rose rapidly,

within 0.5ps, in both systems to values ^,2kbar and the

relaxation of the other state variables was equally rapid.

Even in hexane the dihedrat angle energy rose to the leve1 of

its average equilibrium value on a similar time scale.

However, to allow for any long time relaxation in the

distribution of conformers and dihedral angles the first 24ps

of the equilibrium run were not included in the averages of

any of the properties calculated.

Having obtained equilibrium configurations at 3gAK shear

rates of 2,5,LA and 20,*10l,os-1' were applied to the hexane

system but only one simulation was performed on flexane at a

shear rate of ',qfl0tos?' . As before equilibrium configurations

were used as the starting points for the calculations at the

Iowest two shear rates so as to observe the attainment of a

steady state. At the highest shear rates the final

configuration from the simulation at , j=q!!q1|S1 *"" used to

reduce the amount of time required to achieve a steady state.
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7.3 Results at 3AgK

In table 7.L the results are given for the mean

thermodynamic functions obtained from the simulations at 3AAK

for all the shear rates applied.

A comparison of the equilibrium data for hexane and

flexane at T-3AAK with that at 2AAK (table 5.I) underlines the

basic similarity of the fluids as the temperature rise

increases the pressure in both systems by -r'8kbar and the LJ

L2-6 potential energy by ,2.6kg.tpfl. The pressure increase

is much greater than that expected purely from a change in the

temperature, ryWryF.lB0balq, emphasising the dominance of the

potential contribution. In other words the pressure increase

is not caused directly by the molecules moving faster but as a

consequence of the increased kinetic energy there is greater

penetration of ttre repulsive core of the interaction sites

which gives larger forces between molecules and hence a larger

Pressure.

In tables 7.2 and 7.3 further averages are given for the

significant components of the stress/pressure tensor and the

alignment tensor along with the resultant shear rate dependent

viscosity
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Table 7.1 The mean thermodynamic functions obtained from

the constant temperature simulations on hexane and flexane at

equilibrium and under shear at T-3AAK, #=A.33749. U=total

energlr. O=total LJ L2-9 potential energlr Oi=intramolecular
I

contribution to O.,jd=total dihedral angle energlr * indicates

calculated for comparison only and the figures in parentheses

are the total duration of the simulation.

Hexane ,

?/totas-L u
i/.r ,or-t i, ""F

1"Gr o"
1-q"

b mot-r y'Jnor-1

urojtlr'u o,

-arol ' -/JmI
rO..

-1 -./Jmol ''
o\ T/K(_.
JJmoL'

e /bar Length
of run
/ps

Y /bar Length
of run
/ps

2L2A 44
+4A @4)

2L7A 44
+5a (ss )

a -24879
+2LO

-28824
+L3A

-28949
+L6A

-289L9
+94

-28874
+L6A

-47664
+94

-47634
+54

-47544
+74

-47344
+64

-46764
+94

-L464
+Lg

-L459
+Lg

-L444
+LA

-L454
+24

-t4LA
+LA

\/K

3ga.aa
!4.s2

3AA.A3
+a.42

756A 299.99 2379 36
+L2A y . gL +2A (6A')

759A 3AA.gA 24A9 LAg
+L2A y.AL +3s (L2A)

74L5 3AA.A4 2524 LAg
+L4A +A.AL +59 G2A)

72AA 3AA.LL 27AA 48
+3A lA . AL +4A rcA)

657A 3AA.29 3L8A 4A

lea la.al +4a rca)

Lg

2A

Flexane

lt -!

g -35959
+64

-3596A
+BA

-47L84
+64

-47L94
+74

-L224
+LA

-L249
+ta

3A829
+3AA

34454

!4LA
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Table 7.2 The mean shear stress, resultant viscosity and

mean normal

calculations

Hexane

pressure components from the steady state

on hexane and flexane at T-3AAK.

.I/tsFtfrt r;rwil
:L

iF /bar-
vv,/1olgs-1

2

5

LA

2A

Flexane

?/Lotos-l

Y/Ldos-t

2

5

LA

2A

Flexane

s itai
xz'

..i

P i/baf
22'

264+38

6r1+35

87L+34

L278!L3

1.3L9+A.L92 24L5+3L

L.22L+g.g7A 23gg+7A

g.87L+A.A3A 24A2+L2A

a.639+A.AA6 2597+8L

2499+49 2442+64

2455+67 27L9+65

2674+48 3A24+45

3153+98 3784+5r

e*;/bar n/8a e

yl;otoeall il*ii

5 A,L65+A.ALL

D -L/3xx

-g.AL2+A.AzL

9.L53+A.AL9

a.L96+4.426

a.247+A.A23

-
y -L/3xx

g.a7s+g.a22

D IL/3'vv
A.AL3+g.AL6

-9. a73+g .aL7

-a. Las+a .a2L

-A.L28!A.AL3

D -L/3
try

-a.ast+a.a2a

\r-tts
a.aal+a.aL4

-A.ABA+g.AL2

-a.aga+a.gLL

-4. LLg+A .gL6

'D :LL/3
zzr

-aiiz*a.s2s

Pr . /b&'nr
2A42+72 2244+75 22A9+LA6

it . rffi;
zz'

Tab1e 7.3 The mean significant components of the

alignment tensor obtained from the steady state calculations

on trexane and flexane at T -3AAK.

Hexane

D
x2

a.LaL+a.gLL

a.L67+A.AL7

a.L97+A.AA7

a.L99+A.gL3

5L2+62 L.A24+A.L23
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7.4 The Shear Rate Dependence of the Viscosity

A comparison of the data in table 7.2 with that in table

6.3 shows that whereas the viscosity of flexane at a shear

rate of .r5*101os-1 '' is, within error, the same at 2AAK and,3gAK

there is a considerable reduction in the viscosity of trexane

at the lowest two shear rates when the temperature is

increased. Further interesting points to note are that the

behaviour of the viscosity of hexane at 3AAK strongly

resembles that of flexane at 2gAK and at the highest shear

rate hexane is slightly more viscous at 3AAK than at 2AgK.

These point,s are illustrated in figs. 7.L and 7.2 w}:ete the

viscosity data for hexane at 3AAK Ls plotted with that of

hexane and flexane at 2AAK. The data at 300K has also been

fitted to the predi.ctions of the theories discussed in

sec.3.5. The parameters for the best fits are given in table

7.4 along with the root mean square differences between the

data points and the fitted curves.
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Table 7.4 Ehe

differences (RMSD)

dependence of the

Ree-Eyring(ne) and

the n(l) vs.? data

are also plotted in fi9.7.3.

best fit parameters and root mean square

for the predictions of the shear rate

viscosity from the theories of Hess,

Kawasaki-Gunton(KG) , (see sec.3.5), for

for hexane at T-3AAK. The best fit curves

RE n(O)/mPa s
re' /ps
m4So/mea s

n(O) fmPa s16 /ps
E-
RMSD/mPa s

n(0)/*Pa s
E /10-5rp" 

"R.t,ISD/mPa s

1.41
26.4
a.a37

1. 38
11.1
4.632
a.a3a

1.68
a.236
9,a49

Hess

KG

The ability of the various functional forms to predict

the behaviour of the viscosity follows a similar pattern that

has been observed before at the lower temperature for hexane

and flexane and for the other systems studied. The Hess, RE

and KG predictions give reasonable fits but the KG square root

law shows a slight tendency to systematically deviate from the

data points. From the estimates of n(O) given in table 7.4

the zero shear rate viscosity for hexane at 3AAK Ls quoted as

L.1Y.2:P.$ This compares with the value quoted for f lexane

at 2AAK of L.7+A.3rPa sJ. So if anything hexane is slightly

less viscous at 3AAK than flexane at 2AAK. From the relevant

constantsir.], ?,5, k and A in tables 7.4 and 6.5 and figure 7.2
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I'igure 7.3 n(i) vs. fk, hexine T-300K (a). Fits to

the predictions of the theories of Eess

(-), Ree-Byring (- -) and Kawasaki-

Gunton (-. -. -) .
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it can also be seen that hexane at 3ggK shear thins to a

lesser extent than flexane at 2AAK. How this behaviour

contrasts with that of flexane at 3AAK Ls difficult to say on

the strength of the results at just one shear rate. However,

as this point is at the lower end of the scale of shear rates

used, which from the hexane results is likely to show more

variation with temperature, and does not show much change from

the result at 2AAR it would be reasonable to assume that

hexane at 3OOK and flexane at 2AAK and, 3AAK aLL showed very
rti

similar n(r) behaviour.

7.5 Shear Induced Alignment

As with the viscosity the significant components of the

alignment tensor r given in table 7.3, show a shear dependence

more akin to that of flexane at 2AgK than hexane at 2gAK

(tab1e 6.4'). This is also the case with the values of the

extinction angler given in table 7.5, derived from the

components of D and shown in fLg.7.4 with those for hexane and

flexane at 2gAR.
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Figure 7.4 The eitinction angle oe()') vs. ffr, hexane

T.300f, ( E), hexane T.20OY, (A) and flexane

T,20OK (v).
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Table 7.5 The extinction angle obtained from the steady

state shear calculations on hexane and flexane at T;3@AK.

Hexane Flexane

/,/iolosr!, lt / a"g Es,/des

5

LA

2g

27 .6+3.2 36.8+4.5

27 .A+2.2

23.7!2.s

At the lowest shear rate studied at 3AAK tuhe imprecision

in the results for P made F$ ita"terminate. For flexane at

30oK and U=mnd%=l- d:]lh; , within error, the same varue as

flexane at zggK and hexane at 3AAK but the on diagonal

components are less affected by the higher temperature and

consequently the extinction angle is significantly higher in

comparison.

7. 6 Non-equilibrium thermodynamics

At the lower temperature the function" lq@ , i&O(Zf ,

&${ ana #.(*X- were calculated to show ttre effect of the

shear flow upon the energy and the pressure of the system. As

it is of interest to see the effect of temperature on these

important rheological properties the same functions have been

calculated from the data obtained at 3AAK and these are given

in table 7.6.
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Table 7.6 The functions dr(f},r IOS*)"*, Xf,(f):
a-

and e(f)'{

obtained from the steady state shear calculations on hexane

and flexane aL T;3AAK. ( * indicates'tatculated for

comparison onIy. )

Hexane

, * /rol9 s-r au{i)/aot=li mrslyTrlo*ri ,,ftg*f*uor:r r ) /aar

2

5

LA

2A

Flexane

5A+249

-3A+264

-49+234

LA+264

3A+LgA

L2A+LLg

32A+LLA

9AA+L2A

'ffi52irfroff"

2g+L7A

-LsA+LgA

-36A+L3A

-9AA+L5A

rQffi)lsret-r

4A+44

LsA+54

33A+54

8LA+54

,!F(/)/uar
4A+64-LA+LAA -384+5LA

,l 10 
lPg tl 

. 6ll(*,lreitt

-LA+Lgg

For hexane ',Al(*1, shows no systematic trend as the

increase in the L,J potential energy is balanced by the

decrease in the dihedral angle energy. The magnitude of the

energy and pressure changes are decreased at this higher

temperature so ttrat they closely resemble those found in

flexane at 2AAK.

rn figs.7.5 and 7.6 the logarithilt of ,rqml ana i&{f}E are

plotted against the 1og. of the shear rate. The data points

fit well to straight lines and the adjustable parameters

resulting from fits to the forms given in eqns.3.B.3 and 6.5.3

are shown in table 7.7.
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Table 7.7 The slopes (a and c) and proportionality

constants ( Frl and Oi,) for the fits of qq(P) and t8'(fh' to the .
;

forms given in eqns. 3.8.3 and 6.5.3 from the steady state

calculations on hexane at T-3TAK.

.D /r^-- 6- /.t *l-l 6. rfbar a ,ol/o-re[1 'c

Hexane 16 1.31 L2 1.45

A comparison with same parameters derived from the

results at 2AAK (table 6.8) reveals that a has increased from

9.56 to I.3I and c has increased from 9.72 to I.45 which is an

approximate doubling of these exponents. However, the

substantial decreases in the constants fi-r ana OrPfrom 224 Lo

16 and from 165 to 12, respectively, offsets the increases in

the exponents.

These results show that the effect of shear on the energy

and pressure is particularly sensitive to the temperatur!. As

the pressure and energy are themselves more a function of

density rather ttran temperature it is likely that the

parameters given in table 7.7 will also show even larger

variations with density.

The resolution of the pressure increases into the three

orthogonal directions by use of the functions t Ah(fli],

defined in eqn.6.5.4' is shown in table 7.A
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Table 7.8 The functions *l@96qe Ets

from the steady state shear calculations

aL T^4AAK.

Hexane

%rffi*
a!6s

-7A+84

-34+74

-39+LLA

ffir*a ,

-L2g+LLA 8g+LLA

defined in eqn.6.5.4,

on hexane and flexane

l./rdo"-t
2

5

LA

2g

Flexane

tflrc?:P*-r

5

&rt"'91
Lg+44

-L3A+94

-3AA+94

-584+99

.lmr'"d o)/tihi
'-Zz

-LA+14

2AA+84

32A+69

6LA+LgA

S;p('*kor,'' 6Pzc6**: Ai

4A+L4A

The trends in the 
-;ffif-.*,'" at 3aoK are the same as at

2AAR with only a small hecrease in their magnitudes. This is

interesting as the actual change in Si' is noticeably less at

the higher temperature. So although the shear dilatancy is

certainly effected by the temperature increase it appears that

the normal pressure differences are relatively insensitive to

this change in the conditions. The indication from this is

that these two effects are more independent of each ottrer than

might be expected since they both arise from changes induced

in the structure of the fluid by the shear.
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1.7 Shear Induced Intermolecular Structural Changes

At 2AAK Lhe changes in the intermolecular energy and the

pressure were related to the distortion of certain

distribution functions under shear. As the pressure and

energy are affected in a similar way at the higher temperature

it is reasonable to suppose that the distribution functions

will also behave similarly. To check this the functions g(r),

G(R), !(q)-- and 1P1(R) r EIS defined previously, have been

t
calculated.

In figs.7.7 and 7.8 the radial distribution functions for

sites, g(r), and COM, G(R), are shown at a shear rate of

J384q1ogj along with the same function at equilibrium.

Comparison with figs.6.L4 and 6.15 for the same function at

2AAK reveal a very similar trend with g(r) strowing only small

changes whereas G(R) shows a general sharpening of the first

and second peaks and their movement to lower values of R.

For the directional functions, G(g), shown in frg.7.9 at

the highest shear rater the rather poor statistics of these

functions makes detailed comparison difficult but it can be

seen that they are much the same as those obtained at 2AAK,

fig.6.16. This is consistent with the similarity in the i,d';l'

at the two temperatures.

The function P1(fl) is shown in fLg.1.LA at the highest
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shear rate and at equilibrium. At the higher temperature the

alignment tensor is not as affected by shear (taUte 7.3) and

this is shown by a smaller increase in ! F1(n)[ compared to that

at 2gAK, f ig. 6. 18.

7.8 Shear Induced Intramolecular Structural Changes
-+

At the lower temperature it was found that hexane was

extended more than flexane by the shear flow. A rationale was

given for this but there was some slight doubt in the results

due to the general paucity of transitions in hexane. Indeed,

one of the reasons for performing these calculations at a

higher temperature was to check this particular result. The

decrease in dihedral angle energy with increasing shear rate,

noted in table 7.6, is already an indication that similar

changes are taking place as at the lower temperatur!. To

compare ttrese further the mean intramolecular separation of

- "n{sites, l4iffiPI , and the root mean square radii of gyration of

sites, ig(Fl, have again been calculated and are shown in

tables 7.9 and 7.L4.
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Table 7.9 The shear rate dependent mean intramolecular

separation of sites, _ry($)r :rS defined in eqns.6.7.1-')6.7.3,

from the steady state calculations on hexane and flexane at

r-j3aax.

Hexane

amulzE
-,,-

a

2

5

LA

2g

Flexane

/^

3.565+g.gA9

3.562+g.gLA

3.593+0.ALL

3.592+g.gg4

3.629+A.gA7

-:mffi/n
3.386+g.glg

3.398+9 .gA9

iCIis*g/f

4.589+A.AL4

4.599+g.glg

4.633+g.gL2

4.635+g.gg5

4.692+g.AA9

.,,frffi/A

4.389+A.gg7

4.4A3+g.gLA

5.557+g.A2L

5.559+0 .422

5.629+4.439

5.63L+g.gL2

5.796+9.424

'ffi/A
5.L74+A.gL3

5.293+g.AL6
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Table 7.LA The shear rate dependent root mean square

radii of gyration,' rc;tfli as defined in eqns .6.7.4-+6.7.6, from

the equilibrium and steady state shear calculations on hexane

and flexane at To3AgK.

Hexane

i*1(f)r/i '$.:1Y7'1A s"tr)i/8,4rp1t1

a

2

5

LA

2A

Flexane

*/isros:l'/

2.854+A.ALs

2.854+g.ALA

2.8A4+g.A2L

2.884+A.gLA

2.9t8+g.ALA

(rini<*si/A

2.683+A .AA7

2.695+A.AA8

L.84L+A.AA9

L.846+g.AA5

L.854+A.Ag5

L.8s7+A.AdA

L,874+A.AA4

'"*<yi/g

L.837+A.AA5

L.837+A.AA6

a.927+A.ALA

9.92L+A.ggg

a.glg+a.aag

a.996+a.aL4

a.885+g.ALL

St zE

a.943+A.AA7

s.94L!A.AA8

a

5

The equilibrium mean separations at 3AAK are less than

those at 2AAK (see table 6.LA) for both hexane and flexane.

This is in agreement with the higher dihedral angle energies

at 3AAR which indicate more gauche angles and hence shorter
.-:

intersite distances. The ^VI'" increase uniformly with the

shear rate as at the lower temperature but not to the same

extent.

The root mean square radii of gyration at equilibrium are

smaller at the higher temperature for sites 1 and 2 but are

greater for site 3, that closest to the COM. This is also
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consistent with the existence of more gauche conformers at the

higher temperature for the reasons given in sec.6.7. Under

shear the tendency is for the molecules to become more linear

and this results in the trends seen in the Q(*f 's where rlr
+;r

and ir; increase and igr decreases with increasing y_.
:: -It

To compare the magnitude of the increase in d1g with that

at 2AAK Ltre function {ffi,ffif, r !9D -6.7.7, has again been

calculated and is given in table 7.11.

Table 7.11 The function.!4f$fl , as defined in eqn.6.7.7,

from the steady state shear calculations on hexane and flexane

^a 
A*:IAAK.

Hexane Flexane

yfl6toe-t'r @tn'; err$r*X

2 A.A4+A.54

5 t.3a+9.8a a.56!a.44

ta 1.33+0.43

2A 2.68+9.57

For hexane there is a noticeable decrease in the amount

of extension of the molecules compared to that found at 2AAK ,

table 6.L2. Indeed, there is less extension in hexane at 3AAK

than in flexane at 2AAK.

More detailed information concerning the change in the

intramolecular structure is given by the distribution of
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tG,'", _{1 !, and dihedral angles, Eth) . These functions are

shown at a shear rate of qg*}Ollslll and at equilibrium in

figs.7.Ll and 7.L2.

The function PLrrg] clearly demonstrates the tendency for

the molecules to become more linear under shear by the sharp

rise in the peak at -6.34 corresponding to the TTT conformer.

In contrast to the results at 2AAK Lhe reduction in the

numbers of conformers containing gauche angles is more even at

3AAK. At the lower temperatures the number of all trans

conformers increased largely at the expense of the TTG

conformers whilst the numbers of TGT molecules remained

Iargely constant. At the higher temperature, although the

situation is not entirely reversed, there is certainly a

greater reduction in the peak at ;5.84, corresPonding to the

TGT conformer, ttran in the peak at -5.2L, corresponding to the

TTG conformer.

The change in P(q,) on shearing, fLg-7-Lz, also shows the

increased probability of trans states under shear. Compared

to the changes at 2AAK, fLg.6.22, ttrere aPpears Iess of a

reduction in the number of gauche angles. To quant.ify this

further the percentages of dihedral angles and conformers are

given in table 7.L2 for hexane and also for flexane.
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Tab1e 7.L2 The mean percentage of dihedral angles and

conformers from the equilibrium and steady state shear

calculations on hexane and flexane aL'3AAK.

t of dihedral angles

Hexane

,tfrfl"

@
a 16.4j3.5 66.6+6.3 L7.g+4.8 L7.2!L.7 69.8+2.7 L3.g+2.7

2 18.5+4.9 66.L+6.4 15.5+5.4 L4.6+2.4 72.'1+3.A L2.7+2-3

5 L7.4+5.2 66.L+7.2 L6.6+4.A L2.8+4.A 76.4!4-A Lg.8+L.7

Lg 16.5+3.3 69.4!4.6. L4.2+4.5 L2.A+2.8 76.9+1.7 11.9+2.1

2A L5.g+4.9 72.L+5.6 L3.g+4.5 9.9+2.4 81 -g+L.9 LA.g+2.L

Flexane

Weilh ETEfl

l*.f

trT
lELi

B
t

J:T
ffi#qlq*
g 3a.g+L.5 38.7+1.5 31.5+2.8 16.4+I.8 67.7+L.5 L5.8+9.4

r-

5 29.7+2.4 4L.L+2.6 29.2+2.3 16.8+0.9 67.1+r.3 16.2+1.3
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Hexane

TTT

?liiroe-1

t of conformers

TGG IG#0- GTG rG+f,tLI GGG others

LA

2A

2L.A 35.6
+2.5 +2.6

23.7 35.2
+4.4 +3.9

27.L 36.4
+5.4 +5.4

29.8 34.3
+2.7 +2.2

36.9 34.9
+5.7 +5.4

25 .5 4.3
+3.6 +1.9

22.7 4.9
+2.8 +2.A

18. 8 4.2
+3 . 8 +2.3

2r.2 2.4
+1.9 +1.3

16. 6 2.L
+I.4 +I.3

a.a 6.4 6.7
+a.6 +2.L +2.8

a.g 5.6 8. r
+a.L +L.7 +3.2

a.a 6.a 7 .2
+a.a +2.4 +1.6

a.g 4.8 7.L
+a.2 !2.3 +2.4

a.g 3.8 5. 3
+g.a +r.3 +1.9

a.4 a.a
+a.6 +a.a

9.6 a.g
+a.7 +a.g

a.6 a.a
+9.6 +a.L

9.3 a.g
+a.6 +a.a

a.2 a.a
+a.4 +a.g

Flexane

?,/rcto"
TTT

-t
TGT TF+A- GrG e+fiL- GGG Others

5.9 26.5 12.4 L2.8 1.5 L7.6 L7.7 4.8 4.9
+9.4 +a.4 +L.2 +A.3 +9.2 +A.8 +A.8 +A.L +A.g

6.5 28.8 L3.2 L2.4 L.2 15.6 16.3 4.7 L-2
+a.8 +r.1 +L.g +9.7 +a.2 +a.8 +1.3 +A.6 +4.2

The figures for the percentage of conformers bear out the

observations already made about,S("S$=, fig.7.I1. The

approximately 15t increase in the proportion of all trans

molecules on going from equilibrium to steady state shear is

Iargely at the cost of the TGT conformers whilst the

proportion of TTG molecules remains relatively constant. The

rest of the difference being made uP by small changes in the

numbers of the less popular conformers.
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7.9 Conclusions

From ttre results at 3AAK Lhe effect of temperature on the

rheological properties of these flexible molecules has been

clearly demonstrated. For flexane it is reasonable to assume

that even though non-equilibrium calculations were performed

at one shear rate there are only small differences in the

shear dependence of the viscosity , alignment, energy and

pressure etc. between the two temperatures. Confirming the

supposition that the density is the most important parameter

in fluids composed of molecules without barriers to internal

rotation. In hexane, of course, there are barriers to

internal rotation which largely determine the intramolecular

structure and dynamics of the molecules. As the effective

height of ttrese barriers is temperature dependent it follows

that these intramolecular properties are also. What is

apparent from the hexane results is that there is also a very

important secondary intermolecular effect which ctranges the

bulk rheological properties drastically. There clearly is

then some interest then in establishing which properties of

these fluids differ in their response to an increased

temperature as it is like1y that these properties are

generally important in determining the rheological behaviour

of fluids.
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7.1O Static Properties : 2OOK vs. 3O0K

For the static intermolecular functions, such as the

intermolecular potential energy and the pressurer the

similarity in the changes for hexane and flexane on going from

2gAK Lo 3AAK have already been noted in sec.7.3. These can be

related to changes in the distribution functions g(r), G(R)

ana _!ri(n! shown in figs.7.13+7.L5 where the functions at 3AAK

are compared with the results at 2AAK. For flexane there are

only very slight changes in all the functions. The site-site

r. d. f .., g ( r ) , shows the greater penetration of the repulsive

core which leads to higher pressures and energies and the

characteristic trend of a reduction in the order of the

system, Iower peaks and higher troughs in g(r), expected at

elevated temperatures. G(R) and 'Pl(R), with their poorer

statistics, are virtually the same within error. For hexane

it can be seen that the general trend is as it is in

flexanefor g(r). G(R) and F1'(P)i for hexane do show some

changes , however, with a loss in the distinct sptitting of

the first peak seen in the G(R) for hexane at 2AAK. This

results from a reduction of the degree of alignment between

molecules in this region shown very clearly in the first peak

or Ftth.}.

The one static ProPertY that

increasing the temperature is the

hexane (see tables 5.1 and 7.1).

noticeably changes on

dihedral angle energy in

This can be seen to result
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from a different distribution of dihedral angles as shown in

fig.7.16. The higher temperature smoothes out the

distribution reducing the height of aII three peaks

corresponding to the minima in the potential , 9:-Ao and g=+I20'.

The net effect, however, is to reduce the number of angles in

the trans state, if one uses the criteria previously described

in sec.5.7, by around 6E (see tables 5.2 and 7.L21. There is

also a similar effect in the distribution of the end-to-end

separations, fLg.7.L7. The actual percentages of the various

conformers has already been given in tables 5.2 and 7.L2.

These show that the change in the TTT peak of p(q16),

corresponds to an approximately IIE decrease in the number of

all trans conformers. The resulting increase in the numbers

of gauche containing conformers is spread evenly over the

available possibilities.

4,

The functions g(g) and ,dr$ for flexane at the two

temperatures, given in f igs i?. fq grd ?;'i?!,show little dif ference

even on the expanded scale used. This is also apparent from

the percentages of conformers and dihedral angles given in

tables p.Z 
""a 

?;12l.

From the initial

emerges that although

structure of these two

differs quite markedly

affected to almost the

comparisons of static properties it

the behaviour of the intramolecular

molecules as a function of temperature

there intermolecular structures are

same degree giving similar changes in
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the intermolecular potential energy and the pressure. The

results for flexane suggest that this change in intermolecular

structure would not be enough to explain the changes in the

rheological properties of hexane. It is also reasonable to

assume that as the rheological properties are collective in

nature the actual static intermolecular structure is in itself

not an important factor. Thus, it is not possible to explain

the behaviour of hexane in terms of a direct effect of the

temperature upon its internal structure or through the

secondary effect this has on the intermolecular structure.

This leads to the conclusion that the effects seen in hexane

are more a result of changes in its dynamical properties.

7.11 Dynamical Properties : 2O0K vs. 3OOK

At the lower temperature the relaxation times for the

internal modes in hexane were found to be in excess of LAAps

when they were determined by fitting the dihedral angle

auto-correlation function,,-$q6tW=(gtp0*et{*8')> ' , to the form of

a single exponential,

- r;*, #,'w.-Effi .

{For flexane 'a was found to be in the region of A.3-+A.5ps

(see sec.5.8). At the higher temperature C#ffi tras again been

calculated and fits to a single exponential have been

performed. These are shown in fi9-7.18 for hexane and

flexane. As can be seen S*$6r, for hexane fits well to a

single exponential form with a 'rr'of -I7ps. The fit for
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flexane is less satisfactory and it appears that there are two

exponential decays present as at 2AAK where the correlation

function for the central angle was found to have a longer

relaxation time than that for the outer angles. Nevertheless,
,....^

the value of ',trr used for the fit, A.32ps, is virtually the

same as at 2AAK. This is a significant result as it clearly

demonstrates a major difference in the effect of temperature

on the two fluids. Whereas in hexane the relaxation ti-mes for

internal modes are reduced by at least a factor of six by a

temperature increase of LAAK Lhe same change tras virtually no

effect on flexane.

To emphasise this point the mean time between transitions

, {d, has again been calculated from the numbers of
L

transitions in a certain time according to eqn.5.8.1. This is

as described in sec.5.8 except that 3AAK the the number of

transitions in hexane was calculated from each s00th

configurat.ion rather than every configuration. This means

that there are likely to be fewer 'transitions' counted than

there would have been using the original definition as an

angle going from one weII to another and back again within 5AA

steps may not be counted at all. Despite this slight

inconsistency the mean transition times obtained of -2Bps and

nA.53ps for hexane and flexane respectively compared to those

obtained at 2AgK, *IIOPs and -0.7Ps, show the same effect as

the dihedral angle correlation functions.
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At 2AAK it was found that the diffusive motion was

different in the two fluj.ds with flexane having a higher

diffusion coefficient and less oscillatory velocity

auto-correlation function. This was qualitatively explained

as being due to the fact that in flexane its much faster rates

of torsional relaxation could couple more to the diffusional

motion leading to 'softer' collisions and hence less

'rebound'. It might be expected then that as the increase in

temperature affects the torsional relaxation of hexane much

more than that of flexane it then follows that the diffusive

motion of hexane should be affected more by the temperature

than that of flexane. This has been checked by evaluating the

velocity auto-correlation functions and the mean sguared

displacements and hence the diffusion coefficients. The

diffusion coefficients obtained from both methods are given in

table 7.13.

Table 7.L3. The diffusion coefficients for hexane and

flexane at 3AAR obtained from 3-

(a) the mean squared displacements and

(b) the integral over the velocity auto correlation function.

(b)

*m-enmf

Hexane

Flexane

a.97+A.A8

L . t2+4 .96

a.97+4.49

L.2g+4.49

it was noted that the two
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methods of evaluating D gave different answers and thj-s was

attributed to truncation of the VACF. At the higher

temperature this does not seem to be the case as both methods

give the same values for D within the errors quoted. A

comparison of the diffusion coefficients obtained using the

mean square displacements approach at the two temperatures

reveals that D has increased from A.35 Eo A.97 4"-i?+ in

hexane and from a-53 to I .L2'*eo-s#" 'it flexane' These

correspond to increases by factors of 2-8 and 2.L

respectively. Which is a significant although not spectacular

difference. However, if one instead chooses to look at the

short time diffusive bqhaviour, given by the VACF, then the

difference is much more marked as D increases from 4.49 to

A . 97 !!* 
q#S_:t1 - in hexane and f rom g . 96 to only L .2A

*f! 'gn?s,],,- in flexane, increases by factors of 2 and L.25
t

respectively. Qualitatively this is explained by the changes

in the forms of the VACFs on going from 2AAK Lo 3AAK,

fig.7.I9. In flexane there is some movement of the

oscillations in rCo(t)' to shorter timesr Ers might be expected,

but only a slight decreases in their depth. In hexane there

is a significant reduction in this tendency for the COltl

velocity to be reversed at later times compared to that at

2AAK with the result that the short time diffusion is greatly

enhanced.

It, thus, appears that there is more of a correlation

between the change in the short time behaviour of the VACF and
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the change in the viscosity than between the diffusion

coefficient and the viscosity. The lack of correlation

between the viscosity and the diffusion coefficient follows

from the flexane results where the increase in temperature

doubles the diffusion coefficient but as far as can be

ascertained hardly affects the viscosity. This means that it

is not possible to explain the decrease in the viscosity of

hexane in terms of the effect the internal modes have on the

diffusion coefficient a more likely cause is the effect the

flexibility has on the short time dynamic behaviour.

7.L2 Conclusions

From the results on hexane and flexane a number of

important conclusions can be drawn concerning the like1y

rheological behaviour of real flexible molecules. On a

macroscopic scale it has been shown that the effect of the

flexibility of a molecule manifests itself most noticeably in

the temperature dependence of the viscosity and in the shear

thinning and shear dilatanL properties. The model systems

used here predict that for liquids composed of molecules with

differing barrier heights to internal rotation the viscosity,

at constant density, will decrease more rapidly as a function

of increasing temperature for that fluid containing molecules

with the higher barriers. This does not necessarily mean that

the temperature coefficient of viscosity will be higher as

this coefficient relates the dependence of the viscosity upon
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the temperature at constant pressure. The degree to which

this correlation exists between the temperature coefficients

will depend largely on the comparative expansivities of the

two fluids. In the model calculations their would probably be

a very good correlation as the fluids were designed to be as

closely comparable as possible. Indeed, it was certainly

found that the pressure versus temperature behaviour, at

constant density , was much the Same in the two fluids so it

is reasonable to expect it to be also the case for the density

versus temperature behaviour at constant pressure.

For fluids undergoing shear flow these model studies

predict that the degree of shear thinning and shear dilatancy

will be dependent upon the molecular flexibility. It has been

found that less flexible molecules will shear thin to a larger

extent and show a greater tendency to adjust their volume

under shear. The magnitude of these effects will also

decrease more rapidly with temperature in accordance with the

findings for the temperature dependence of the zero shear rate

viscosity. .

An interesting question arises concerning the comparative

mechanisms by which the viscosity falls as a function of

temperature and as a function of shear rate. As the

temperature is increased it appears that the viscosity

decreases because the reduction in the effective barriers to

rotation increase the flexibility of the molecules which in
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turn alters the short time dynamic behaviour. As a function

of the shear rate it is true that the shear flow can ceuse

drastic changes in the conformation of molecules but there is

not any noticeable change in the flexibility. This leads to

the conclusion that the mechanism causing the shear viscosity

to decrease as a function of temperature is not the same as

that which causes the shear thinning. Indeed, it seems that

the effect of increasing the shear rate is to reduce the

importance of those properties which lead to a difference in

the zero shear rate viscosity thus explaining the virtual

coincidence of the high shear rate viscosity of hexane and

flexane at 2AAK.
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CHAPTER 8

GE}IERAL CONCLUSIONS

8.1 Diatomics

In the diatomic chlorine calculations it has been

demonstrated that two molecules, differing only in their
anisotropy, have quite different pressure coefficients of the
viscosity. . The effect is to cause the longer molecu1e, which

is less viscous at low pressures, tO become more viscous than

its shorter counterpart at pressures of -IGPa. It was found,

however, that this behaviour correlated closely with the
compressibilities of the two liquids, that composed of the
Ionger molecule being the more compressible. This is an

important result as in real lubrication situations pressure is
the applied variable rather than density so fluids are

characterised in terms of their pressure coefficients of
viscosity and reasons are then sought to explain why these

vary. The diatomic results suggest that a better correlation
might exist for their density coefficients of viscosity and

then the problem reduces to one of explaining differences in
their compressibilities. Sufficient data probably exists on

real lubricants to test this hypottresis, if it has not been

done already.

One interesting question that remains unanswered in the
diatomic systems is the degree to which the anisotropy affects
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the shear thinning behaviour. If it is purely a density
effect then a similar correlation would exist in theirr ds yet
undefined, 'density coefficients of shear thinning' as for the
density coefficients of the viscosity. Ttris could be tested
using HSNEMD but would require data from several more

densities in addition to ttrose studied here to get a clear
picture of how the degree of shear thinning varies. It is an

important question to answer as it is under the highly
directional conditions found at high shear rates that the
effect of the'shape'of a molecule is most likely to manifest
itself. If it transpires from these kind of model studies
that the anisotropy is an important factor in determining the
degree of shear thinning it would have obvious relevance to
the design of real lubricant molecules.

8.2 Ethane and Propane

The results for the smaller alkanes principally
demonstrate the overriding effect the interaction potential
has when one considers the rheological properties in absolute
terms. By simply adding an extra site to the diatomic model

the resulting triatomic was demonstrably more viscous and

showed greater shear thinning and shear dilatancy. It was

reasoned that this was largely due to the different effective
temperatures of the two liquids rather than the difference in
the densities. To put the results in to context further
calculations would have to be performed at different
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conditions to assess the likely
factors.

changes caused by geometrical

8.3 Hexane and Flexane

In the hexane and flexane calculations it was possible to
come closest to the desired goal of observing the effect of
one parameter independently of aII others, in this case the
flexibility. It was found that although the two fluids
differed radically in their intramolecular structure and

internal dynamics, thermodynamically they were very similar.
This enabled comparisons to be made between the two. liquids
essentially at the same state point. The results of studies
at constant density and at two different temperatures revealed
that the barriers to internal rotation exerted a significant
influence on the rheological properties of these fluids. At
the lower temperature the zero shear rate viscosity, degree of
shear thinning and the shear dilatancy were all greater for
the molecule with the higher internal barriers to rotation,
hexane. The effect of increasing the temperature was found to
be to reduce the differences between the two and it was

concluded that molecules with higher internal barriers to
rotation will have higher temperature coefficients of
viscosity provided that their expansiviLies are comparable.

273



APPENDIX 1

Link Cells

The method of link cells lJ-29,L3A7 is a technique whereby

Iarge samples NlLgAA, of particles interacting through short

range forces can be simulated efficiently. The method works

by pre-eliminating most of the N(N-1)/2 possible pair

interactions which fal1 outside the interaction sphere of a

particular particle. This is achieved by subdividing the main

MD box into smaller cells to which the particles within them

are assigned the number thereof. Particles ttren only interact

with ttrose in their own and neighbouring celIs. To be

consistent the length of a ceII, CL, has to be greater than

the cutoff distance of the potential and if L is the length of

a side of the box t /Ct, must be an integer which must not be

less than three. In the case used here for the diatomics the

positions of the COM, which aII lie between +I, were used to

assign link celI indices. A cubic box was used in all cases

of dffi cellse so for all sides of the MD cube L=NL*CL.

Initially the indices of a particle I, sdlr are found from

rX = (xcoM(r)+I .A)/ct, + I

and similarly for IY and IZ. This gives the number of the

cel1 of which I is a member as

rc(r) = rX + (rY-I)*tg, + (rz-L)*16,*

which is stored for future reference. To join all such

molecules in a certain cell together three arrays are used
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LO(NL,NL,NL), Ll(NL,NL,NL) and LINK(N) . Arrays LO and Lt are

used to store the first and last members of ceIl Ilf.rTyrIZ.

Before the initial assignment of particles to cells LO and Lt

are zeroed. The procedure, having found the ceII indices, is

then to find the last member of the ceIl, M say, where

M=Ll(rX,IY,rZ). If M=A, which it will do initially for all

celIs, then

Lg(TX, rY, rZ)=!
Ll ( Ix, IYl IZ ) =f

otherwise

LINK (u) =r
Ll(rx,IY1IZ)=f.

This procedure performed for all N particles sets up the open

chains of particles in each ceII. The following procedure is

then used to close the chain

M=Ll ( IX, IY, IZ )

LINK(tU) =f,g ( IX, IY, IZ )

To evaluate the forces the conventional MD double loop is

replaced by a loop over all cells. Having identified the

indices of the subject ceIl, IIriIl and Kl salr a list is

generated of the indices of the molecules in that ceIl by

IT=A
I=LA ( r 1r.l1, KI )
M=I

9AA3 IT=IT*1
INOM(rt)=r
I=LINK ( I )
rF(r.NE.M) GOTO 9AA3
ITC=IT

and a note is made of their number, ITC. The list, INOM, is

then extended in a similar fashion to include all molecules in

thirteen of the nearest neighbour cells. OnIy thirteen of the
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possible twenty six are taken as a loop over all cells ensures

that all neighbouring cel1s will eventually be taken together.

Ihis procedure generates in INOM a list of IT molecules the

first ITC of which are in the subject ce1l. A simple double

loop then performs the business of taking those pairs of

molecules, I and iI, to be interacted

DO 9AAA IK=I,ITC
r=INOM( IK)
IKl=IK+1

3

DO 9AA9 .]K=IKI r IT
I=INOM(JK)

3

This method differs from that in tl29l in that the 13 nearest

neighbour ceII indices only have to be generated once for each

subject cell instead of once for each molecule in the subject

ceIl.

fhe rest of the force routine etc. is as it is in a

conventional prograrn but as the molecules move they will

eventually move out of one ceII into another. To test this

the number of the cell the molecule I is in now is generated

from the indices and compared with IC(I). If it is the same

then one passes to the next but if it has changed then its

reference has to be erased from the link list of its o1d ceIl

and included in that of its new cell. This occurs at the end

of each time step after the implementation of the usual

periodic boundary conditions.
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The method is certainly very efficient in terms of store

requiring at most two more N-dimensioned arrays than usual

plus LO and LI each of dimension ffi and the list array INOM

which will be dependent upon the maximum number of molecules

to be found in a total of L4 cells. In terms of CPU time

tests have shown [130] that for sample numbers less than -LAAA

the link cell method represents a saving over conventional

prograrnming. It is slow compared to nearest neighbour table

methods, however, but becomes progressively more attractive as

the sample number is increased and the neighbour table method

runs into memory requirement trouble and the problem that at

least one very time consuming conventional double loop has to

be performed periodically to update the neighbour Iist.
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APPENDIX 2

Forces from the DihedraL Angle Potential

As the dihedral angle potentiat,IB: given in eqn.

5.2.L, is written in terms of the dihedral angle it is

necessary to expressS t" terms of the four positions defining

fla" obtain the forces on these sites due to it tl3Ll. If

these sites "r"=lHryfffilrthen the force on site i due

to the dihedral angle potentiaf , {ffi, is given by

difficulty in differentiat.ing 6G with respect to

perform the second part of eqn. A2.1 {Fffifras to

There is no

liffi r,rt to
be expressed in terms of the positions of the sites. From

fig. A2. I it can be seen that fr i" given by the dot

product of the two unit vectors ft ana

t:

Now . __ m is given

and n by

here the bond lengths and the

n

:a:!=-::--t".':-
:,r ir.i - _

'. 

--:1

by

since in the model used
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angres are rigidry fixed at the varues or*#l.rra

ffi i,. cornbining eqns. A2.2, A2.3 and A2.4 gives

(ffiJtrfs)rya$ (*r' rl)"ln *;3S"'l

which as

gr-ves

Differentiating eqn. A2.5 w.r.t { rfor example, gives

and combining with eqn. A2.1 gives for the foree on site 1 as

and similarly for the other sites.

,

As their are three dihedral angles per molecule sites

that make up more than one angle wilL feel a force from each.

fhis is sirnply achieved by treating each angle in turn and

surrning the resultant forces.

iffi#l
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APPENDIX 3

Nearest Neighbour Tab1es

The method of nearest neighbour tables lLA2l is the

predecessor to the link ceI1 method as a means of reducing the

amount of time required to access those pairs which are within

each others interaction sphere. In its original form a N*N

array is used to store the index of those particles which are

within a certain radiusr rp[ of the subject particle, I,

during the cours.e of evaluating the forces in a normal double

loop. For a number of subsequent steps only those particles

in the table are considered thus reducing the CPU time

substantially. ,:a, t" chosen such that .r-r., the truncation

radius, is greater than the distance afr"a 
"ould 

be reasonably

covered by a particle in the number of steps between updates

of the table. Various improvements, refinements etc. have

been suggested, e.g. II32,133r134], to try and make the

process more efficient and to reduce the active memory

requirements. In the method used here for the hexane/flexane

programr orr the CDC 7649, where for 1O8 molecules, i.e. 648

atoms, virtually all the small core memory was reguired, a

simple variant of the method of neighbour tables was used

requiring virtually no extra active memory space.

This was achieved by including in the conventional double

Ioop the following alterations

2Ag



NI=N-I
DO LAA I=I,NI
xr=x(r)

:

TTC=A
I1=I*1
DO 2AA J=IL tN
xo=XI-x (,J )

3

Rf =x! * * 2 +YD* rc 2+ZD* * 2
rF(R2.cE.RM2) GOrO 2AA
ITC=ITC+1
INUM(rrc)=or
rF(R2.GE.RC2) GOTO 2Ag

3

2gA CONTINUE
WRITE (49 ) ITC, INUM
3

IOO CONTINUE

The neighbour lists are thus stored sequentially on discr on

channel 49, in machine readable form. In the case used here

{m:f#+l".",flfland the lists were updated every 1O steps. In the

alternative loop the procedure was then

REWIND 49
DO LAA I=IrNI
xr=X(r)

READ(49)ITC,INUM
rF(rrc.EQ.a ) Goro tga
DO 2AA JC=L,ITC
J=INUM(Jc)

Despite the overheads incurred in writing to and reading from

disc this method still represents a saving, in terms of CPU

time, over the conventional MD double loop and although it is

not as fast as the usual nearest neighbour method it does not

?rave the store problems thereof requiring only one. extra

vector of dimension N.

f.,.-r'*'= 'ai

28L
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