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This paper reviews the computational aspects of a method for applying domain
decomposition to a general purpose molecular dynamics program. The algorithm is
suitable for either distributed memory parallel computers or shared memory
machines with message passing libraries. The method allows molecules of arbitrary
connectivity to be simulated within the domain decomposition approach. The
algorithm contains techniques to handle both rigid bond constraints and special
CH2 constraints, as well as two, three- and four-body intramolecular potentials and
van der Waals and Coulombic interactions. Benchmark results of such a program
(ddgmq) are illustrated.

1 . Introduction
At the molecular level the detailed structure and dynamics of many systems are very difficult to
discern by spectroscopic methods (x-ray, NMR, etc.). As a complement to such conventional
approaches, interest has turned in recent years to atomistic computer simulation, usually molecular
dynamics (MD), methods [1]. In many cases these simulations have provided detailed insight into
phenomena. However, the time and length scales accessible to simulation are restricted by the
computing power available and for atomistic simulations this is currently in the nanoscale regime.
Thus, many technologically and biochemically interesting systems which extend over distances larger
than 10 nm and/or relax on time scales longer than nanoseconds are difficult to simulate adequately
using standard MD codes running on single processor computers. It is essential to develop new
parallel algorithms capable of handling complex biochemical and technological systems. Solving this
problem opens up the prospect of simulating systems of a much larger scale than was ever previously
possible and thus the opportunity of advancing our understanding of many processes at a
fundamental level.

Early attempts at parallelizing MD simulations were largely limited to atomic systems and to highly
specific problems, e.g. [12, 19, 28, 29, 41]. During this time, a number of strategies were proposed
for mapping MD onto multiple-instruction multiple-data (MIMD) machines based on either particle
decomposition, i.e. assigning particles to home processors using their indices, or domain
decomposition, i.e. assigning particles to processors according to their position in space [19, 33, 34,
40, 41, 46, 47]. Although there have been more recent developments involving force decomposition
[36, 37] and attempts to combine strategies [11], the problem has remained that the best parallel
solution for a particular simulation depends on factors like the average number of particles per
processor and the speed of the individual processors. However, for large scale simulations where
there are many more particles than processors, there is little doubt that domain decomposition (DD) is
the optimum approach.
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2 . Molecular dynamics
As an introduction to some of the difficulties involved in applying domain decomposition to a
molecular system of arbitrary connectivity some of the common practices carried out in molecular
dynamics computer simulation [1, 20, 21] are first reviewed. To keep matters relatively simple only
classical systems will be considered; the parallelization of methods which introduce quantum
mechanics into the dynamics is not considered here.

In a classical MD simulation a molecule is modelled as a number of point masses, atoms, connected
by a network of interconnecting bonds. Molecules interact with one another via the sum of all
possible pair interactions between their constituent atoms. The approximation that atoms on different
molecules experience a force between them independent of all the other atoms present is a relatively
crude one but is almost universally made in classical MD; incorporating 3-body, 4-body etc. effects
leads quickly to prohibitive computing costs. It is generally argued that the pair potential is an
effective potential, rather than a true representation of the actual pair interaction between isolated
atoms, and as such takes into account the higher order terms through the parametrization.

The main purpose of these so-called non-bonded effective pair potentials is to prevent two atoms
from occupying the same region of space (short range repulsive interaction). Attractive terms in the
potential  hold liquid/solid systems together and influence the preferred packing structure of the
molecules to a greater or lesser extent depending on their exact nature. An example of a pair potential
widely used in MD simulations is the Lennard-Jones 12-6 potential

ΦLJ(|rij|) = 4ε((σ/|rij|)
12-(σ/|rij|)

6) (1)

where the pair of interacting atoms, {i,j}, have a separation vector denoted by rij (=ri-rj), ε is the

well-depth of the potential and σ is the distance at which the potential is zero. This is just one of
many such potentials which combine a repulsive term, dominant at short range, and a quickly
diminishing attractive tail. In practice a truncation, rc, is normally applied beyond which the force
between particles is defined to vanish. Although this is an approximation the restriction of the range
within which explicit interacting pairs have to be found is necessary in order to render the problem
tractable.

With regard to the parallelization, the exact form of the short range non-bonded pair potentials is of
no importance; the real problem lies in calculating uniquely the distance between all possible
interacting pairs. However, one of the continuing problems with MD simulations concerns the
treatment of the charge-charge interactions. Formally these are described by the Coulombic potential

Φc(|rij|) = qiqj / (4πεο|rij|) (2)

where qi and qj are the partial charges on the two atoms and εο is the permittivity of the vacuum.
The 1/r nature of this potential means the energy diminishes very slowly with range and in the
program to be described here, the Ewald lattice summation method [18, 48] has been used. This
method effectively splits the Coulombic energy into two sums, one performed in real space,
involving explicit calculation of pair distances, and a second in Fourier space, which involves a sum
over reciprocal lattice vectors. In the 3D periodic boundary conditions, used in MD to reduce
otherwise dominant boundary effect, the Ewald summation nominally fits well into a DD strategy.
First, the real space part of the sum involves a potential which quickly diminishes with range and
can, thus, be treated like all other short range potentials. Second, the reciprocal space summation,
formally a sum over pairs of atoms, can be factorized into a single sum involving atomic positions
only, within a sum over reciprocal lattice vectors, k. The parallelization of this second part is then
trivial in DD with each processor performing the sum over k-vectors for each atom in its domain. The
Ewald method does not scale linearly, however, and more about this will be said later.

Atoms within the same molecule may also interact through pair potentials in the same way as
described above. This depends if the interactions are deemed to be ‘non-bonded’ or ‘bonded’.
Normally a certain number of ‘bonded’ interactions maintain the local geometry within molecules.
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Atom pairs forming a chemical bond can be kept close to a certain distance apart by a continuous
potential. Similarly other potentials can be used to force preferred structure upon, for example, bond
angles, torsion angles and the out of plane motion of trivalent atoms. The exact form of these
potentials is again not particularly important. However, for the parallelization by decomposition in
domains the most important point is that a certain number of atom positions are required in order to
calculate the potential and the forces. For example, a bond angle, θ, is defined by the positions of
three contiguous atoms {i, j, k}  (i bonded to j and j bonded to k and i≠k),

cos θ = (rij •rkj)/|rij||rkj| (3)

Similarly, four contiguous atoms {i, j, k, l} are required to define the torsion (or dihedral) angle, τ,
between the planes of the two groups {i, j, k} and {j, k, l}

cos τ = – 
(rij ×rjk)•(rjk ×rkl)

|rij ×rjk| |rjk ×rkl|
(4)

It is inevitable that a decomposition in domains will result in atoms which define bonds, bond angles,
torsions etc. being placed on different processors. The parallelization of the calculation of these
‘bonded’ interactions requires, thus, the unique identification of the group of atoms, hereinafter
referred to as n-plets, in question by just one processor. An added minor complication is that atoms
involved in these intramolecular n-plets are often considered as not being subject to the non-bonded
potentials; their effect having being incorporated in the intramolecular potential. The parallel algorithm
has then to be able to distinguish between these ‘bonded’ and ‘non-bonded’ pairs.

Given a set of initial coordinates and velocities for the atoms, the boundary conditions and a
description of the interactions between particles, MD progresses by calculating the total force on each
atom and then integrating the equations of motion forward by a short time interval, ∆t, using finite
difference methods. Done repeatedly, this process builds up a trajectory for each atom in the system
from which various thermodynamic and dynamic properties can be calculated. The equations of
motion can be of the Newtonian form or be more complicated in a number of ways, e.g. in order to
force the system to have a certain average temperature and pressure [1]. The integration step in the
above cases does not pose any problems for domain decomposition as each particle’s position is
propagated forward independently once the forces are known. The actual algorithm used to do the
time integration is not directly important with respect to the parallelization.

The use of continuous potentials to impose a certain geometry on molecules does pose some indirect
problems. Realistic force constants for bond stretching modes are very high and lead to high
frequency motions. These restrict the maximum time step that can be used to integrate the equations
of motion. Although multiple time steps algorithms [49, 51, 52] are one solution to this problem they
don't in themselves solve a more serious problem which concerns the poor coupling between the
high-frequency low-amplitude modes and the rest of the modes in the system. In completely classical
MD simulation this presents a real problem as it can lead to non-equipartition of energy and hence
results which have nothing to do with the sampling conditions required. A standard solution to these
problems is to use rigid constraints.

The simplest form of constraint is that of a rigid bond between atoms. However, other more
complicated forms [22, 43] can involve more than two atoms. A particular example is the special
constraints required to freeze all the degrees of freedom of hydrogen molecules in a CH2 group [22].
For a X-CH2-Y group, holding the mid-point of the H-H vector on the bisector of the X-C-Y
bending angle and maintaining the H-H vector perpendicular to the vector joining the X and Y atoms
removes all the degrees of freedom of the hydrogens. Such a constraint involves the positions of five
atoms. Although there are different methods available to incorporate a solution of the constraints
problem into the equations of motion, we will restrict the discussion in this paper to probably the
most common one based on the iterative procedure ‘SHAKE’ [44]. SHAKE solves the constraints
problem by first allowing particle positions to be propagated forward in the absence of the forces of
constraint to provisional positions at the next time step. Final positions are then obtained at the next
step by applying all the constraints in turn and iterating this process until all constraints are satisfied
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to within some specified tolerance. In scalar codes the most recent positions are always used in order
to speed up convergence; an atom may be involved in several constraints. This recursive operation
impedes vectorization so either coordinates at the previous iteration are used, and increased
vectorization traded against an increased number of iterations, or methods to avoid recursion are
utilised [32].

Incorporating constraints into the dynamics ameliorates the problem of short time steps and largely
solves the poor coupling problem and, despite the extra complexity and CPU costs of solving the
constraints problem, leads to net savings in scalar or vector codes. With respect to domain
decomposition, SHAKE introduces an extra problem in that, at the integration step, the propagation of
a particle’s position forward in time is no longer a process independent of all other particles in the
system. Inevitably atoms involved in constraints will straddle domain boundaries, thus implying
communication at each iteration of the SHAKE procedure.

3 . Parallel Molecular Dynamics

3 . 1 Background
In the DD strategy, each processor element (PE) is responsible for particles residing in a particular
sub-volume of the MD box and each processor accumulates the total forces on the particles in its
domain and integrates their equations of motion. Although DD is relatively straightforward to
implement for atomic systems in which only pair interactions exist (and there are now numerous
examples [2, 8, 23, 27, 29, 34, 35, 42, 50]), the connectivity of molecular systems introduces a
number of new difficulties [7, 17]. These can be summarized as follows:-
(1) Multiparticle potentials and specialized constraints require that the group of n atoms involved in

the calculation be simultaneously known by one PE which is assigned to carry out the necessary
computations.

(2) Particles subject to rigid constraints may lie in different domains. The procedure SHAKE,
generally used to impose rigid constraints, implies a communication between processors at each
of several iterations.

(3) Not all pairs of atoms interact via non-bonded pair potentials.
As a result of the above, most attempts to parallelize general purpose MD codes have relied on
simpler to implement particle decomposition techniques [4, 15, 25, 26, 30, 31, 45] which are
unsuitable for large-scale simulations as each processor requires a knowledge of all atomic positions.
Some improvement is possible using force decomposition techniques [37] but, as yet, there are only
a few examples in the literature of DD MD programs being used for molecular systems [7, 13, 14,
17, 38].

In the following section, some general remarks are made about our implementation of domain
decomposition. We then discuss the extension to molecular systems of arbitrary connectivity. Further
details can be found in a recent article [10] and in the on-line manual for the gmq and ddgmq
programs [6].

3 . 2 General considerations
In the DD scheme used, the atoms are initially assigned to the Npx×Npy×Npz=Np processors on the
basis of the x, y and z coordinates, i.e. 3-D decomposition of space. The exact shape of the MD box
does not have to be orthorhombic and assignments are actually carried out using the set of scaled

coordinates si = h-1ri where the matrix h={a, b, c} is defined from the basis vectors of the MD
box. The scaled space is cubic and facilitates easy assignment of particles to processors. The scaled
space also facilitates the assignment of atoms to the Ncx×Ncy×Ncz=Nc link-cells within each domain.
The link-cell strategy [1] is useful both as a way to speed up the creation of a neighbour table [1] and
as a means of determining which atoms lie close to domain boundaries and, thus, have to be
communicated to neighbouring domains.
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At this point, each PE is only aware of particles in its own domain. As atoms are assigned to
processors, it is inevitable that some molecules will be distributed among two or more of them.
Decompositions based on molecular centres-of-mass can avoid this problem [16] but they are not an
option in the general case where molecules span many domains.

Once the assignments to domains and link-cells have been made, the first step is a search for all
interacting pairs of atoms. This requires the communication of those coordinates required by other
domains to complete their ‘working’ environment. In order to minimize communications at this stage,
the conventional link-cell search pattern is modified [8]. A schematic representation of the form of the
modification in 2-D is shown in Fig. 1; the extension to 3-D follows straightforwardly.
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Figure 1 A schematic 2-D representation of the link-cell neighbour search pattern used in the
domain decomposition program. The thick black lines mark the boundaries
between regions which different processors are responsible for. In this example all
the 16 link-cells that are resident on the central processor (numbered in bold type)
are searched using the pattern shown. In addition all the particles in the received
cell 16 are interacted with those in 22.

A link-cell search for interacting pairs normally treats each link-cell in the same way. Particles within
a link-cell are interacted amongst themselves and then with the contents of half the 26 (8 in 2-D)
nearest neighbour link-cells [1]. If this search method was to be applied in a domain decomposition
code, it would require direct or indirect communications with 17 (5 in 2-D) of the nearest neighbour
processors. By modifying the search pattern of link-cells according to their position within a domain,
direct and indirect communications are only required with 7 (3 in 2-D) of the nearest neighbour
domains and can be accomplished efficiently with just three (two in 2-D) communication steps. The
flow of information during these three communication steps [7] is demonstrated in Fig. 2.
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Figure 2 The flow of information in the communication stage prior to the all-pair search.
The figure shows an initial set of 2×3×4 link-cells in a domain (top left). At the
first communication step all PEs pass to their southern neighbour all the
coordinates of sites in the link-cells on their southern periphery. This results in
each PE now having access to coordinates in an extra layer of link-cells (top right).
Two further communication stages follow, to the east and to the above neighbours,
in an analogous manner to give the final working environment (lower right).

As can be seen from Fig. 2, a subject domain's working environment of link-cells is built up by
communications in each of the three perpendicular directions, i.e. with respect to the aforementioned
scaled space used to assign particles initially to PEs. The nomenclature used is that the neighbouring
PE in the -y (“southward”) direction is called South, that in the +x (“eastward”) direction is called
East and that in the +z “upward” direction is called Above. In the first stage of communication, each
PE simultaneously sends information for all particles found on the southern layer of link-cells to its
southern neighbour. At the same time, each PE receives some information from its northern
neighbour. This increases the working environment of a PE by one layer of link-cells. In the second
and third stages similar exchanges occur in the other two directions, as shown in Fig. 2.

Following this initial communication stage, each processor has access to enough of the coordinate
information to perform its share of the all-interacting-pairs search. This initial pair search not only
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allows the interaction of all non-bonded pairs but also the formation of neighbour tables of non-
bonded pairs. These neighbour tables are used in subsequent steps until they become redundant. In
the worst possible case, this is when any site has diffused a distance greater than or equal to half the
shell width (a parameter used in the construction of the neighbour table [7]) since the last rebuild.
Only at this stage is it also necessary for sites to get reassigned to different PEs, should they have
diffused out of their previous home PEs, so as to ensure that sites appear in their correct link-cells for
the next rebuild. Subsequent steps are handled by the neighbour tables and other lists formed so it is
irrelevant if a site wanders out of the region that its home PE is nominally responsible for.

3 . 3 Domain decomposition for molecular systems
The main problem encountered in applying domain decomposition to molecular systems is the unique
identification of the n-plet groups required for multi-particle potentials and constraints. In their work
on a domain decomposition algorithm for a molecular system, Esselink and Hilbers [17] show that,
as long as the distance between any two atoms in an n-plet is no greater than that of the truncation
distance of the non-bonded pair potential, it is certain that at least one processor will have all the n
atoms in its working environment. As a result, no extra communication costs need to be incurred
over those of the search for all-interacting-pairs. The same result was also found for linear chain
systems [7], despite the fact that a different communication environment was used.

Given the above guiding principle, the problem thus reduces to one of identifying that processor
which will be temporarily responsible for a particular n-plet and signalling to it that this is the case.
Extensive details of the solution to this problem are given in [10]; in summary it involves the
following novel features:-

(i) In addition to its coordinates and velocities, each atom carries around with it details of its atom
type, global atomic index, global molecular index and information concerning the neighbours
with which it is has ‘bonded’ interactions.

(ii) All bends, torsions and groups requiring special constraints, e.g. those for CH2 groups as in
[22], are assigned to a particular atom and are also carried by this atom whichever processor it
moves to.

(iii) At the first step, and other steps where the neighbour lists etc. have to be rebuilt, a table is
required indicating the local index and processor identity of all atoms known to each PE, i.e.
both those a processor is directly responsible for and all those it receives during the
communication stages prior to the search for all interacting pairs.

(iv) Using the tables formed in (iii), any two atoms found during the pair search to be involved in a
‘bonded’ interaction make further lists which contain each others indices and processor
identities in all the PEs they are known in. This information is communicated back to each
atom’s home PE at the end of the pair search. By doing this, each atom knows for each of its
‘bonded’ neighbours all PEs in which they both appear in and their local indices therein. It is
then a simple matter of finding for each n-plet the processor which is aware of all n atoms and
signalling to it that it is responsible for that n-plet. This procedure allows each PE to build lists
of all the n-plets it will handle for this and following steps until the lists are deemed redundant.

Although this procedure increases some of the communication costs, much of the information is
invariant for the period that each processor works with the same set of atoms, i.e. between neighbour
table rebuilds, and so the effect of the extra overhead is ameliorated.

Previously, we discussed a parallel implementation of SHAKE appropriate for rigid bond constraints
[7] and this approach has only to be slightly adapted to accommodate the special CH2 group
constraints. At each SHAKE iteration, the rigid bond constraints are imposed first and all
displacements to atoms occurring in other PEs are sent back to the home PEs. The resulting
positions, updated for the imposition of the rigid bond constraints, are then used as input to an
iteration of the CH2 special constraints. As for the rigid bonds, this involves an outward
communication of current positions followed by a return of any displacements to atoms which occur
in other PEs. Using this approach, the algorithm converges within a reasonable number of iterations.
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3 . 4 The general purpose parallel MD code ddgmq
Using the techniques summarized above, an existing general purpose scalar code, gmq, has been
successfully parallelized. The working code, ddgmq, has been implemented on Silicon Graphics
Power Challenge and Origin 2000, IBM SP2, Cray T3E and Sun Enterprise 10000 machines with
communications between processors being handled by calls to the MPI message passing library. The
program contains a parallel SHAKE algorithm to handle both rigid bond constraints and special CH2
constraints. Simulations are performed using 3-D periodic boundary conditions within a primary MD
box defined by three arbitrary basis vectors, i.e. even triclinic cells can be simulated. Techniques are
implemented for allowing control of the temperature and the pressure tensor in the system. Full
details of the functionality of the gmq and ddgmq codes and their mode of operation can be found in
the manual [6].

The code is currently being used to perform ~1 ns simulations involving up to ~100000 atoms with
full account taken of the electrostatic interactions [5]. The new parallelized general MD code can
perform such computations in reasonable times (2 or 3 weeks). Such simulations were unfeasible to
do within a reasonable time scale using scalar codes.

4 . Benchmark
The benchmark system is a small peptide called echistatin, which contains 49 amino acids (713

atoms), immersed in a 603 Å3 cubic (periodic) cell filled with 6903 water molecules and one chloride
ion, to maintain charge neutrality, i.e. a total of 21423 atoms in total at a density of 997.97 kg m-3.
The force-field used to specify the interactions between atoms was based on CVFF. The values used
throughout for the Ewald summation were α=0.29 Å-1, rc=8.5 Å and Kmax=14 (see [6]). A real

space truncation of 8.5 Å allows the system to be decomposed into a maximum of 3×3×3=27
domains each of ~20 Å side length and each containing the minimum number of link-cells allowed by
the code, i.e. 2 per dimension each with a length greater than rc plus the shell-width (1.5 Å) used in
the creation of the neighbour table. Rigid bond constraints were satisfied to a relative tolerance, 10-5.
The benchmark itself consisted of performing 100 integration steps of length 1 fs on a configuration
previously equilibrated at a temperature of ~298 K; further details can be found in [10]. The mean
CPU times per step and relative speed-ups as a function of the number of processors are given in
table 1.

SGi Origin 2000 IBM SP2 CRAY T3E
No. of
PEs.
(Np)

CPU time
per step /s

(τp)

Speed-Up
τ1/τp

CPU time
per step /s
(τp)

Speed-Up
2∗τ2/τp

CPU time
per step /s

(τp)

Speed-Up
12∗τ12/τp

1 24.20 1 - - - -
2 12.19 2.0 14.64 2 - -
4 4.98 4.9 7.66 3.8 - -
8 2.51 9.6 4.27 6.9 - -
12 1.80 13.4 3.46 8.5 4.36 12
18 1.32 18.3 2.60 11.3 2.87 18.2
27 1.02 23.8 2.48 11.8 1.75 29.9

Table 1. The results for the echistatin in water benchmark for the general purpose parallel MD
program ddgmq running on three different, and heavily utilised, machines:-
SGi Origin 2000: INRIA, Nancy (64 PEs, MIPS R10000, 195 MHz, 8 GByte RAM)
IBM SP2: CNUSC, Montpellier (127 PEs, P2SC, 256 Mbyte RAM per PE)
CRAY T3E: IDRIS, Orsay (256 PEs, DEC Alpha EV5, 300 MHz, 128 Mbyte RAM per PE)

The benchmark is too large to run on one processor of the IBM SP2 or even 8 on the CRAY T3E, a
problem related to the distributed memory of these machines compared to the physically
distributed/logically shared memory of the SGi Origin 2000, so speed-ups for these machines are
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based on the time for the minimum number of processors usable. As all the timings were obtained
with the machines in multi-user mode and subject to varying loads not too many conclusions can be
drawn. The speed-ups on the SGi and Cray machines hold up well but the code performs less well
on the SP2.

5 . Discussion

5 . 1 Ewald vs P3M
It is well known that the Ewald method doesn’t scale linearly with system size and many attempts
have been made to overcome this using other techniques and current opinion [39] favours particle-
particle particle-mesh (P3M) type approaches [24]. For large systems on scalar machines there is no
doubt such approaches have a big advantage, however, within DD this is not quite so clear. It has to
be remembered that the real space pair search has to be carried out in any case for the short range
potentials. The best that can be achieved then is to reduce the CPU time for the reciprocal space sum,
or the particle-mesh part of P3M, down to an insignificant fraction of the total. Traditional FFT
approaches to solving this problem using P3M are not easily adapted to DD. Alternative iterative
routes [3] in principal get over the mapping onto DD but don’t deliver the same accuracy as Ewald at
any less cost. In any case, for the size of systems that are feasible on the present generation of
machines the cost of the reciprocal space part of the Ewald sum is about the same as for the real space
sum so at best a factor of two speed-up would be obtained. Given this and the fact that P3M
approaches are, unlike Ewald, intrinsically approximate methods, often requiring the optimisation of
many tuning parameters, we prefer to continue using our current methods to evaluate Coulombic
sums.

5 . 2 Constraints vs continuous potentials
For systems where Coulombic interactions have to be taken into account, such as the benchmark
system above, the overall cost of the parallel SHAKE algorithm is < 2%, i.e. the calculation is
dominated by the cost of the non-bonded pair interactions. In other systems where Coulombic
potentials are absent and the range of the non-bonded potential is very short [9] the cost rises to
~20%. So in either case the CPU cost of using rigid constraints is easily justified by the increase in
time step and the removal of equipartition problems.

5 . 3 Load balancing
In simulations of pure liquids there is usually a homogeneity in the density which means that there is
a natural load balancing; each processor receives roughly equal numbers of particles. In multiphase or
interfacial systems there is likely to be a variation in the number density of sites within the simulation
box and perhaps also a variation of the complexity of molecules also; leading to imbalances in the
numbers of pairs, bends, torsions etc. in the lists for each PE. In this situation there will be benefits
to be gained from balancing the load on the processors.

5 . 4 Increasing the number of processors
One of the restrictions of the current implementation of DD is that the truncation range of the
interaction potential determines the smallest domain into which the system can be decomposed. This
is necessary at present to ensure that only local communications with neighbouring domains are
required to carry out the all-pair search. This places a restriction on the maximum number of
processors that can be used. To subdivide the system into smaller domains whilst maintaining the
same interaction truncation distance implies communications between non-neighbouring PEs. A
method which accomplishes this indirectly by local communications alone has recently been
described [35] and this may be a way to increase the efficacity of DD.
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